Lightweight Formalisation

of Denotational Semantics
In AGDA

Peter D Mosses

TU Delft (visitor)
Swansea University (emeritus)

FP Day, Niimegen, Netherlands, 9 January 2026

How many of you are
AGDA users?

Lightweight Formalisation of Denotational Semantics
- about the topic

Formalisation

> of (hew or existing) mathematical definitions
Denotational semantics

> with recursively-defined Scott-domains, fixed points, A-notation
Lightweight

> requiring relatively little effort or AGDA expertise

Lightweight Formalisation of Denotational Semantics
- about the talk

Examples
> Inheritance
> the untyped A-calculus
> SCHEME

Postulating domain theory
> lightweight

> synthetic

Denotational semantics
- Scott-Strachey style

Types of denotations are (Scott-)domains
> pointed cpos (e.g, w-complete, directed-complete, continuous lattices)

> recursively defined (up to isomorphism)

> domain constructors (functions, products, sums, ...)
Denotations are defined in typed A-notation
> functions on domains are continuous maps

> endofunctions on domains have least fixed points

Inheritance

Original motivation for lightweight formalisation

A Denotational Semantics of Inheritance
and 1ts Correctness

William Cook* Jens Palsberg
Department of Computer Science Computer Science Department
Box 1910 Brown University Aarhus University

This paper presents a denotational model of inheritance.
The model 1s based on an intuitive motivation of the
(1963-2021) purpose of inheritance. The correctness of the model 1s
demonstrated by proving it equivalent to an operational
semantics of inheritance based upon the method-lookup
algorithm of object-oriented languages.

OOPSLA '89: Conference proceedings on Object-oriented programming systems, languages and applications

14

https://dl.acm.org/doi/proceedings/10.1145/74877

Formalisation of a Denotational Semantics of Inheritance
— AGDA code: GitHub repo pdmosses/jensfest-agda/

Quite clumsy
> my very first attempt to use AGDA (2024)
> domalin equations: domains assumed isomorphic to their structure
> functions on domains: defined in A-notation, assumed continuous
> all assumptions declared as module parameters

Encouraging results

> detected several (minor) issues — including the omission of a projection

8

https://github.com/pdmosses/jensfest-agda/

The untyped A-calculus

Models of the untyped A-calculus

Some mathematical presentations:
» Dana Scott (1970): Outline of a Mathematical Theory of Computation
- complete lattices
» Samson Abramsky and Achim Jung (1994): Domain Theory
- directed-complete posets (dcpos)
> John Reynolds (2009): Theories of Programming Languages
- w-complete posets (w-cpos)

10

Denotational semantics of the untyped A-calculus

g Thearies isomorphism continuous maps

2 of

> Programming

= languages Doo pR— [Doo — Doo]

S ot Reynols continuous maps

- € exp — [(var — D) — Dool

[v]l 7
[Av.e]l n ()\:c € Do [le]lln]|v : x])
[e el n (¢)(Tel) ([T n)

Copied from www.cs.yale.edu/homes/hudak/CS430F07/LectureSlides/Reynolds-ch10.pdf

11

(Y,

https://www.cs.yale.edu/homes/hudak/CS430F07/LectureSlides/Reynolds-ch10.pdf

Models of the untyped A-calculus

Some formalisations:
> Bernhard Reus (1999): Formalizing Synthetic Domain Theory
- using Extended Calculus of Constructions, defined in LEGO

> Tom de Jong (2021): Iypelopology/DomainTheory

- using Univalent Type Theory, defined in AGDA

12

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA

Analytic formalisation in AGDA
— using TypeTopology/DomainTheory

Definitions
~ adomain D is a tuple ({D), C, L, proof)
- such that proof : "({D), C, 1) is a pointed dcpo"
~ a continuous function between domains is a pair (f : (D) — (E), proof)

- such that proof : "f preserves suprema of directed sets"

> collections of recursively-defined domains are bilimits of diagrams
- eg.,D_ =D, — D_], up to isomorphism

14

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA
— using TypeTopology/DomainTheory

We have the non-trivial domain D and isomorphism Dy, ~IP° (D, =9°P° D).

abs: (Do =9P° D) = (Do)

app: (Do) =2 (Do) = (Do)

a continuous function is a pair:
— an underlying function and
— a proof of its continuity

15

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA
— using TypeTopology/DomainTheory

We have the non-trivial domain D and isomorphism Dy, ~IP° (D, =9°P° D).

abs: (Do =9P° D) = (Do)
abs = [Do =9P° D, , Do |{ m-expoo’)

app = underlying-function Do Do 0 | Do s Do ——dcpo gy |{ e-expeo’)

a continuous function is a pair:
— an underlying function and
— a proof of its continuity

16

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA
— using TypeTopology/DomainTheory

| ||: Exp— Env— (D)
A-is-continuous : ¥V e p v — is-continuous Do Do (Ax—= e || (p[x/V]))

| varv || p=p v

[2v-e]p=abs((1x—[e] (p[x/v]) tiscontinuousepv)

lei-e2lp=app(flerflo)(le]p)

The proof of the proposition isn't very deep —

A-1s-continuouse pv = {! !} | |
but it takes 3 pages in John Reynolds’s book...

17

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

A-abstractions in continuation-passing style
- e.g., in the SCHEME language standards

E[l(lambda (I*) T'* Eg)| =
APWE . O .
newo €L —
send ({(newo | L,
Ne*w' Kk . He* = H#TF —
ticvals(Aa™ . (A\p’ . C[I'*]p'w' (E]Eo]p'w'k"))
(extends p I a™))
e*,
wrong “wrong number of arguments”)
in E)
K
(update (new o | L) unspecified o),
wrong “out of memory” o

18

Lightweight formalisation in AGDA

Lightweight formalisation in AGDA

Abstract syntax grammar

> Inductive datatype definitions
'Domain' definitions

» postulated bijections between type names and type terms
Semantic functions

> defined inductively in A-notation

Auxiliary definitions

20

Lightweight formalisation in AGDA

— abstract syntax for the untyped A-calculus

module LC.Terms where

open import LC.Variables

data EXp

var_
lam

app

variable e

. Set whe
. Var - Ex
. Var - Ex
. Exp - EX

. Exp

re
D
D - EXp

0 - EXp

21

-- variable value
-- lambda abstraction
-- application

Lightweight formalisation in AGDA

- postulating a domain for the untyped A-calculus

module LC.Domains where

postulate

Domain : Set: -- type of all domains

D . Domain -» Set -- carrier of a domain
open import Function using (Inverse; _o_) public
open Inverse {{ ... }} using (to; from) public
postulate

Do . Domaln

postulate instance
bi : (Do) & ({ Do) - ¢ Do)) A

variable d : ¢ Dwo)

22

Lightweight formalisation in AGDA

- semantic function for the untyped A-calculus

module LC.Semantics where D :22 (Do — D]
(0
open import LC.Variables [-] € exp — [(var — Doo) — Dool
open 1mport LC.Terms
. . [v]n = nv
open 1mport LC.Domailns \ B \ H |
open import LC.Environments [Av-eln = vz € Doo. [e]lln|v: z])
[eeln = ¢ ([eln) (Le'Tn)

[_] : Exp » Env - (Do)
-- [e 1 p is the value of e with p giving the values of free variables

[var v I p =pV
[lam Vv e Ilp =from (Ad-[el(pl[d/vVv]))
[app e1 e2 Jp =to(IlLerlp) (Le21p)

23

Lightweight formalisation in AGDA

- testing the denotation of an untyped A-term

open import Relation.Binary.PropositionalEquality using (refl)
open Inverse using (inversel)

to-from-elim : V {f} - +to (from f) = f
to-from-elim = inverse' bi refl

{-# REWRITE to-from-elim #-}

-- (AX1.x1)x42 = x42
check-1id :
[app (lam (x 1) (var x 1))
(var x 42) 1 = [var x 42]
check-id = refl

24

Lightweight formalisation in AGDA

- testing the denotation of an untyped A-term

-- (Ax0.x0 x0)(Ax0.x0 x0) = ...
-- check-divergence :
-- [app (lam (x ©) (app (var x @) (var x 0)))

- - (lam (x @) (app (var x @) (var x 90))) 1
—= = [var x 42] /‘\

-- check-divergence = refl

-- (AXx1.x42)((Ax0.x0 x0)(Ax0.x0 x0)) = x42
check-convergence
[app (lam (x 1) (var x 42))
(app (lam (x ©) (app (var x 0) (var x 90)))
(lam (x ©) (app (var x @) (var x 0)))) 1
= [var x 42]
check-convergence = refl

25

Lightweight formalisation of SCHEME

— AGDA code: GitHub repo pdmosses/scheme25-agda/

Quite smooth
> my second attempt to use AGDA (2025)
> domains are arbitrary types
> functions on domains: defined in A-notation, assumed continuous
> all assumptions declared as (sometimes unsatisfiable!) postulates
Encouraging results

» detected several wellformedness issues in the SCHEME standard

27

https://github.com/pdmosses/scheme25-agda/

Lightweight formalisation of

— AGDA code: GitHub repo

Quite smooth
> my current attempt to use AGDA (2026)
> of domains are
> functions on domains: defined in A-notation, assumed continuous
> all assumptions declared as (hopefully satisfiable!) postulates
Safer notation

> with the logical foundations of AGDA ?

28

https://github.com/pdmosses/xds-agda/

Lightweight formalisation of SCm

— postulated types and elements

postulate
Domain : Set: -- type of all domains
D . Domain - Set -- carrier of a domain
variable
A B C . Set
D EF . Domain
n . Nat
postulate
1 . < D) -- bottom element

1 . Domain -- trivial domain

29

Lightweight formalisation of SCm

- postulated types and elements

postulate
- C : Domain - Domain - Domaln -- assume continuous

dom-cts : (D= E)Y=(«(D)->«E))

{-# REWRITE dom-cts #-} /‘\

infixr @ ¢

postulate
fix : ¢ (D -¢ D) »¢< Dy -- fixed points of endofunctions

30

Lightweight formalisation of SCm

— abstract syntax

data EXp where
con
ide
(—u-)
(lambda
(1f_-)
(set!_,)

—I_I—

data Exp* where

L

. Con - EXp
. Ide - Exp
. Exp -» Exp* - EXp
. Ide - Exp - EXxp
. Exp - Exp - Exp - EXp
. Ide - Exp - Exp

. Exp*
. ExXp - Exp* - EXxp*

31

-- expressions
-- K
-- I
- (B E¥)
- (lambda I E)
- (if E E1 E2)
- (set! I E)

-- expression sequences
-- empty sequence
-- prefix sequence E E*

Lightweight formalisation of SCm

- domain equations

data Misc : Set where
null unallocated undefined unspecified : Misc

N = Nat.Ll

T = Booll

R = Int +.L

P = L x L

M = Misc +

F = E*x -»¢ (E -»¢ C) -»¢ C
--E = T+R+P+ M+ F
S = L -»¢ E

U = JTde -»° L

C = S -°¢ A

32

Lightweight formalisation of SCm

— Injections, iInspections, projections of summands

postulate

_T-1n-E KT - E)

_E-T : (E -< Bool +.1)
| -T . (E -< T)
_R-1n-E - ¢ R - E)

_E-R : ¢ E -< Bool +1)
_|-R . ¢ E -¢ R)
_P-1n-E - ¢ P -¢E)

_E-P : ¢ E -¢ Bool +1)
_|-P . C E ¢ P)
_M-1n-E (M - E)
_E-M : ¢ E -< Bool +1)
_|-M . C E - M)
_F-1n-E . F ¢ E)

€-F : E -¢ Bool +1)

_|-F . C E -¢ F)

33

Lightweight formalisation of

- semantic functions

R°RS
E:Exp>U—-K—>C
SII(I'F E() E1 Ez)]] —
Apk . E| Ey || p (single (Ae . truishe — &E| Eq | pxk,

S Ez [px))
Agda
E[_] :Exp > U—->K-—>C

E| (if Eg _E; _Ey) | =
Apx— E|Ey| p(single (A e — truishe — E| E; | p K,

S Ez | px))

Postulating Domain Theory

Bernhard Reus (1999)

Formalizing Synthetic Domain Theory.
J. Autom. Reason. 23(3-4): 411-444

Abstract. Synthetic Domain Theory (SDT) 1s a constructive variant of Domain Theory where all
functions are continuous following Dana Scott’s idea of “domains as sets”. Recently there have been
suggested more abstract axiomatizations encompassing alternative notions of domain theory as, for
example, stable domain theory.

In this article a logical and axiomatic version of SDT capturing the essence of Domain Theory a
la Scott 1s presented. It 1s based on a sufficiently expressive version of constructive type theory and
fully implemented in the proof checker LEGO. On top of this “core SDT”’ denotational semantics and
program verification can be — and 1n fact has been — developed 1n a purely formal machine-checked
way.

36

Alex Simpson (2004)

Computational adequacy for recursive types in models of intuitionistic set theory.
Ann. Pure Appl. Log. 130(1-3): 207-275

Categories that model recursive types have nontrivial fixed-point operators and thus, by
a simple argument using classical logic, cannot be full subcategories of the category of sets.
In [37], Dana Scott showed that such categories can nonetheless live as full subcategories
of models of intuitionistic set theory, an observation that led to the subsequent development
of synthetic domain theory [7,14,22,2°7,34,35,38,45,477]. In this paper, we exploit this idea
to obtain algebraically compact categories in a uniform way. Roughly speaking, we start
off with a category S of intuitionistic sets that satisfies one simple axiom, Axiom 1
of Section 2. From any such category S, we extract a full subcategory of predomains,
P < . S, whose associated category of partial maps, pP, is algebraically compact.

[37] D.S. Scott, Relating theories of the A-calculus, in: To H.B. Curry, Academic Press, 1980, pp. 403—450.

37

Safe lightweight formalization in AGDA?

- future work (help welcomel)

Implement Synthetic Domain Theory in plain AGDA

>

>

>

>

add a type of predomains
allow unrestricted recursive domain definitions (?)
prove that all postulated properties are consistent with MLIT T

prove that functions defined in A-notation are always continuous

38

Lightweight Formalisation of Denotational Semantics
- summary

Examples

> the untyped A-calculus (analytic, lightweight)
> sublanguage SCcMm
Postulating domain theory
> lightweight
> synthetic

39

pdmosses.github.io/xds-agda/dev/

— examples: untyped A-calculus, SC™m

© Lc.Tests - XDs-Agda X @ About - XDS-Agda X+

g ©

e Test.Plain.Test - Agda-Material X
&

C @

O B pdmosses.github.io/xds-agda/dev/ E 110%

s

N XDS-Agda dev ~ ®

Q. Search

About

Lambda-Calculus Scm Notation

Library

L O I8

About

About

Lambda-Calculus

A Sublanguage of Scheme

Meta-notation Experiments with Agda support for Scott—Strachey denotational semantics

Examples

Complete examples of denotational semantics definitions in Agda:

e LC: the untyped A-calculus

e Scm: a sublanguage of Scheme

© info

w

pdmosses/xds-agda
w1l %0

©

Table of contents
Examples

Domains in Denotational
Semantics

Domains in Agda

Extending Agda with Scott-
Domains

Adding a Universe of Domains

Implementing Synthetic Domain
Theory

Discussion

https://pdmosses.github.io/xds-agda/dev/

Postulating Domain Theory

Postulating Domains

module Lifted where

postulate
_+1 : Set - Domain -- lifted set
N (A -s A +1L) -- 1nclusion
_4 : ¢ (A -3 D) »¢< A+1L -< D) -- Kleisli extension

module Sums where

postulate
+ : Domain - Domain - Domailn -- coalesced sum
inj1 . (D-<D+ E) -- 1njection
inj2 . ¢ E-><D+ E) -- 1njection

[_,_] : ¢ (D »¢ F) »< (E - F) »¢< (D + E »¢< F) » -- case analysis

43

Postulating Domains

module Products where

postulate
X . Domain - Domain - Domain -- cartesian product
- . ¢ D-°E->°<DxE) -- pairing
121 D x E -< D) -- 1st projection
122 (D xE - E) -- 2nd projection
13T (D xE x F -¢< D) -- 1st projection
132 (D xE x F -¢E) -- 2nd projection

module Tuples where

A . Domain - Nat - Domain

D A O = 1

D A = D

D A suc (suc n) =D x (D A suc n)

44

Postulating Domains

module Sequences where

open Lifted.Naturals

open Tuples

postulate

*

0
()
#

4
.«
4

. Domain - Domain -- D » finite sequences
D *) -- {} empty sequence
: ¢ (D Asucn)-¢<D~+=p) --(di, ...) non-empty sequence
. ¢ D » - NatL) -- # d~» sequence length

D * ¢ D » 2¢< D) --dx § d+ concatenation

D » »¢ Nat -5 D) -- d* 1 n nth component

D » »¢ Nat -5 D ») -- d* T n nth tail

45

