
FP Day, Nijmegen, Netherlands, 9 January 2026

Lightweight Formalisation
of Denotational Semantics
in AGDA

Peter D Mosses
TU Delft (visitor)

Swansea University (emeritus)

1

How many of you are
AGDA users?

2

Lightweight Formalisation of Denotational Semantics
 – about the topic

Formalisation

‣ of (new or existing) mathematical definitions

Denotational semantics

‣ with recursively-defined Scott-domains, fixed points, λ-notation

Lightweight

‣ requiring relatively little effort or AGDA expertise

3

Lightweight Formalisation of Denotational Semantics
 – about the talk

Examples

‣ inheritance

‣ the untyped λ-calculus

‣ SCHEME

Postulating domain theory

‣ lightweight

‣ synthetic

4

Denotational semantics
 – Scott–Strachey style

Types of denotations are (Scott-)domains

‣ pointed cpos (e.g, 𝜔-complete, directed-complete, continuous lattices)

‣ recursively defined (up to isomorphism)

‣ domain constructors (functions, products, sums, …)

Denotations are defined in typed λ-notation

‣ functions on domains are continuous maps

‣ endofunctions on domains have least fixed points

5

Inheritance

6

Original motivation for lightweight formalisation

7

A Denotational Semantics of Inheritance
and its Correctness

William Cook*
Department of Computer Science

Box 1910 Brown University
Providence, RI 02912, USA

wrc@cs.brown.edu

Abstract
This paper presents a denotational model of inheritance.
The model is based on an intuitive motivation of the
purpose of inheritance. The correctness of the model is
demonstrated by proving it equivalent to an operational
semantics of inheritance based upon the method-lookup
algorithm of object-oriented languages. Although it was
originally developed to explain inheritance in object-
oriented languages, the model shows that inheritance is
a general mechanism that may be applied to any form
of recursive definition.

1 Introduction
Inheritance is one of the central concepts in object-
oriented programming. Despite its importance, there
seems to be a lack of consensus on the proper way to
describe inheritance. This is evident from the following
review of various formalizations of inheritance that have
been proposed.

The concept of prefizing in Simula [5], which evolved
into the modern concept of inheritance, was defined in
terms of textual concatenation of program blocks. How-
ever, this definition was informal, and only partially ac-
counted for more sophisticated aspects of prefixing like
the pseudo-variable this and virtual operations.

The most precise and widely used definition of inher-
itance is given by the operational semantics of object-
oriented languages. The canonical operational seman-
tics is the “method lookup” algorithm of Smalltalk:

* Current address: Hewlett-Packard Laboratories, P.O. Box
10490 Palo Alto, CA 94303-0969, cook@bplabs.hp.com.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy other&e, or to republish, requires a fee
and/or specilic permission.
0 1989 ACM 089791-333-7/89/0010/0433 $1.50

Jens Palsberg
Computer Science Department

Aarhus University
Ny Munkegade, DK-8000

Aarhus C, Denmark
palsberg@daimi.dk

When a message is sent, the methods in
the receiver’s class are searched for one with a
matching selector. If none is found, the meth-
ods in that class’s superclass are searched next.
The search continues up the superclass chain
until a matching method is found. . . .

When a method contains a message whose
receiver is self, the search for the method for
that message begins in the instance’s class, re-
gardless of which class contains the method
containing self. . . .

When a message is sent to super, the search
for a method . . . begins in the superclass of the
class containing the method. The use of super
allows a method to access methods defined in a
superclass even if the methods have been over-
ridden in the subclasses. [6, pp. 61-641

Unfortunately, such operational definitions do not nec-
essarily foster intuitive understanding. As a result, in-
sight into the proper use and purpose of inheritance is
often gained only through an “Aha!” experience [I].

Cardelli [2] identifies inheritance with the subtype re-
lation on record types: “a record type T is a subtype
(written 5) of a record type r’ if 7 has all the fields of T’,
and possibly more, and the common fields of 7 and r’ are
in the 5 relation.” His work shows that a sound type-
checking algorithm exists for strongly-typed, statically-
scoped languages with inheritance, but it doesn’t give
their dynamic semantics. More recently, McAllister and
Zabih [9] suggested a system of “boolean classes” simi-
lar to inheritance as used in knowledge representation.
Stein [16] focused on shared attributes and methods.
Minsky and Rozenshtein [lo] characterized inheritance
by “laws” regulating message sending. Although they
express various aspects of inheritance, none of these pre-
sentations are convincing because they provide no ver-
ifiable evidence that the formal model corresponds to
the form of inheritance actually used in object-oriented

October i-6, 1989 OOPSLA ‘89 Proceedings 433

(1963–2021)

A Denotational Semantics of Inheritance
and its Correctness

William Cook*
Department of Computer Science

Box 1910 Brown University
Providence, RI 02912, USA

wrc@cs.brown.edu

Abstract
This paper presents a denotational model of inheritance.
The model is based on an intuitive motivation of the
purpose of inheritance. The correctness of the model is
demonstrated by proving it equivalent to an operational
semantics of inheritance based upon the method-lookup
algorithm of object-oriented languages. Although it was
originally developed to explain inheritance in object-
oriented languages, the model shows that inheritance is
a general mechanism that may be applied to any form
of recursive definition.

1 Introduction
Inheritance is one of the central concepts in object-
oriented programming. Despite its importance, there
seems to be a lack of consensus on the proper way to
describe inheritance. This is evident from the following
review of various formalizations of inheritance that have
been proposed.

The concept of prefizing in Simula [5], which evolved
into the modern concept of inheritance, was defined in
terms of textual concatenation of program blocks. How-
ever, this definition was informal, and only partially ac-
counted for more sophisticated aspects of prefixing like
the pseudo-variable this and virtual operations.

The most precise and widely used definition of inher-
itance is given by the operational semantics of object-
oriented languages. The canonical operational seman-
tics is the “method lookup” algorithm of Smalltalk:

* Current address: Hewlett-Packard Laboratories, P.O. Box
10490 Palo Alto, CA 94303-0969, cook@bplabs.hp.com.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy other&e, or to republish, requires a fee
and/or specilic permission.
0 1989 ACM 089791-333-7/89/0010/0433 $1.50

Jens Palsberg
Computer Science Department

Aarhus University
Ny Munkegade, DK-8000

Aarhus C, Denmark
palsberg@daimi.dk

When a message is sent, the methods in
the receiver’s class are searched for one with a
matching selector. If none is found, the meth-
ods in that class’s superclass are searched next.
The search continues up the superclass chain
until a matching method is found. . . .

When a method contains a message whose
receiver is self, the search for the method for
that message begins in the instance’s class, re-
gardless of which class contains the method
containing self. . . .

When a message is sent to super, the search
for a method . . . begins in the superclass of the
class containing the method. The use of super
allows a method to access methods defined in a
superclass even if the methods have been over-
ridden in the subclasses. [6, pp. 61-641

Unfortunately, such operational definitions do not nec-
essarily foster intuitive understanding. As a result, in-
sight into the proper use and purpose of inheritance is
often gained only through an “Aha!” experience [I].

Cardelli [2] identifies inheritance with the subtype re-
lation on record types: “a record type T is a subtype
(written 5) of a record type r’ if 7 has all the fields of T’,
and possibly more, and the common fields of 7 and r’ are
in the 5 relation.” His work shows that a sound type-
checking algorithm exists for strongly-typed, statically-
scoped languages with inheritance, but it doesn’t give
their dynamic semantics. More recently, McAllister and
Zabih [9] suggested a system of “boolean classes” simi-
lar to inheritance as used in knowledge representation.
Stein [16] focused on shared attributes and methods.
Minsky and Rozenshtein [lo] characterized inheritance
by “laws” regulating message sending. Although they
express various aspects of inheritance, none of these pre-
sentations are convincing because they provide no ver-
ifiable evidence that the formal model corresponds to
the form of inheritance actually used in object-oriented

October i-6, 1989 OOPSLA ‘89 Proceedings 433

. . .

OOPSLA '89: Conference proceedings on Object-oriented programming systems, languages and applications

https://dl.acm.org/doi/proceedings/10.1145/74877

Formalisation of a Denotational Semantics of Inheritance
 – AGDA code: GitHub repo pdmosses/jensfest-agda/

Quite clumsy

‣ my very first attempt to use AGDA (2024)

‣ domain equations: domains assumed isomorphic to their structure

‣ functions on domains: defined in λ-notation, assumed continuous

‣ all assumptions declared as module parameters

Encouraging results

‣ detected several (minor) issues – including the omission of a projection
8

https://github.com/pdmosses/jensfest-agda/

The untyped λ-calculus

9

Models of the untyped λ-calculus

Some mathematical presentations:

‣ Dana Scott (1970): Outline of a Mathematical Theory of Computation

- complete lattices

‣ Samson Abramsky and Achim Jung (1994): Domain Theory

- directed-complete posets (dcpos)

‣ John Reynolds (2009): Theories of Programming Languages

- 𝜔-complete posets (𝜔-cpos)

10

Denotational semantics of the untyped λ-calculus

11

1

John C.Heynolds

NiI
N-%00001"

11

114000 %Op' is _, L. .` 4

Semantic Equations

D1
�
�! �

[D1 ! D1]

[[�]] 2 exp ! [(var ! D1)! D1]

[[v]] ⌘ = ⌘ v

[[�v. e]] ⌘ = (�x 2 D1. [[e]][⌘ | v : x])

[[e e0]] ⌘ = � ([[e]] ⌘) ([[e0]] ⌘)

We have to prove that all terms in this definition are in the required domains:

�x 2 D1. [[e]][⌘ | v : x] is a continuous function from D1 to D1

the so-defined [[�]] is a continuous function from Env to D1.

 Copied from www.cs.yale.edu/homes/hudak/CS430F07/LectureSlides/Reynolds-ch10.pdf

continuous maps

continuous maps

isomorphism

https://www.cs.yale.edu/homes/hudak/CS430F07/LectureSlides/Reynolds-ch10.pdf

Models of the untyped λ-calculus

Some formalisations:

‣ Bernhard Reus (1999): Formalizing Synthetic Domain Theory

- using Extended Calculus of Constructions, defined in LEGO

‣ Tom de Jong (2021): TypeTopology/DomainTheory

- using Univalent Type Theory, defined in AGDA

12

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA

13

Analytic formalisation in AGDA
 – using TypeTopology/DomainTheory

Definitions

‣ a domain is a tuple (, , , proof)

- such that proof : "(, ,) is a pointed dcpo"

‣ a continuous function between domains is a pair (, proof)

- such that proof : " preserves suprema of directed sets"

‣ collections of recursively-defined domains are bilimits of diagrams

- e.g., , up to isomorphism

D ⟨D⟩ ⊑ ⊥

⟨D⟩ ⊑ ⊥

f : ⟨D⟩ → ⟨E⟩

f

D∞ = [D∞ → D∞]

14

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA
 – using TypeTopology/DomainTheory

15

TypeTopology.All

June 7, 2025

Peter Mosses, May 2025 Incomplete

Formalization of the untyped 𝐿-calculus and its interpretation in Scott’s D→. See DomainThe-
ory.Bilimits.Dinfinity for the construction of D→.

{-# OPTIONS --without-K --lossy-unification --allow-unsolved-metas #-}

open import MLTT.Spartan

open import UF.FunExt

open import UF.PropTrunc

open import UF.Subsingletons

module DomainTheory.Bilimits.LambdaCalculus

(pt : propositional-truncations-exist)

(fe : Fun-Ext)

(pe : Prop-Ext)

where

open PropositionalTruncation pt

open import UF.Base

open import UF.Subsingletons-Properties

open import DomainTheory.Basics.Dcpo pt fe U0
open import DomainTheory.Basics.Exponential pt fe U0
open import DomainTheory.Basics.Miscelanea pt fe U0
open import DomainTheory.Basics.Pointed pt fe U0
open import DomainTheory.Bilimits.Sequential pt fe U1 U1
open import DomainTheory.Lifting.LiftingSet pt fe U0 pe

open import Naturals.Order hiding (subtraction’)

open import Naturals.Addition renaming (_+_ to _+’_)

open import Notation.Order

open import DomainTheory.Bilimits.Dinfinity pt fe pe hiding (𝑀)

We have the non-trivial domain D→ and isomorphism D→ ↑dcpo (D→ =↓dcpo D→).

Below, we define the function abs from continuous endofunctions on D→ to D→. The function app
composes the inverse of abs with extracting the underlying function fron a continuous function.

1

abs : 〈 D→ =↑dcpo D→ 〉 → 〈 D→ 〉

abs = [D→ =↑dcpo D→ , D→]〈 𝐿-exp→’ 〉

app : 〈 D→ 〉 → 〈 D→ 〉 → 〈 D→ 〉

app = underlying-function D→ D→ ↓ [D→ , D→ =↑dcpo D→]〈 𝑀-exp→’ 〉

We define an abstract syntax for terms of the 𝑁-calculus, parametrized by the abstract syntax of
variables with a Bool-valued equality test.

The terms of the 𝑁-calculus include free variables, so their abstract syntax is not well-scoped.

open import MLTT.Bool using (Bool; if_then_else_)

module Terms

(Var : U0
.
)

(_==_ : Var → Var → Bool)

where

data Exp : U0
.
where

var_ : Var → Exp

!_·_ : Var → Exp → Exp

· : Exp → Exp → Exp

variable e : Exp

As usual in conventional Scott–Strachey style denotational semantics, bindings are modeled by
environments 𝑂 : Env that map variables v : Var to elements of semantic domains, and 𝑂 [x / v]
extends 𝑂 to map v to x.

We define Env simply as a function type, as we do not need it to be a domain.

Env = Var → 〈 D→ 〉

variable 𝑂 : Env

[/_] : Env → 〈 D→ 〉 → Var → Env

𝑂 [x / v] = 𝑁 v
↔
→ if v == v

↔
then x else 𝑂 v

↔

The denotation ↗ e ↘ of a term e is an element of the type Env → 〈 D→ 〉.

↗_↘ : Exp → Env → 〈 D→ 〉

!-is-continuous : ≃ e 𝑂 v → is-continuous D→ D→ (𝑁 x → ↗ e ↘ (𝑂 [x / v]))

↗ var v ↘ 𝑂 = 𝑂 v

↗ ! v · e ↘ 𝑂 = abs ((𝑁 x → ↗ e ↘ (𝑂 [x / v])) , !-is-continuous e 𝑂 v)

↗ e1 · e2 ↘ 𝑂 = app (↗ e1 ↘ 𝑂) (↗ e2 ↘ 𝑂)

!-is-continuous e 𝑂 v = {! !}

The definition of !-is-continuous e 𝑂 v appears to require lifting lubs of directed families through
the denotation of term e, and could be lengthy...

2

a continuous function is a pair:

 – an underlying function and

 – a proof of its continuity

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

Analytic formalisation in AGDA
 – using TypeTopology/DomainTheory

16

TypeTopology.All

June 7, 2025

Peter Mosses, May 2025 Incomplete

Formalization of the untyped 𝐿-calculus and its interpretation in Scott’s D→. See DomainThe-
ory.Bilimits.Dinfinity for the construction of D→.

{-# OPTIONS --without-K --lossy-unification --allow-unsolved-metas #-}

open import MLTT.Spartan

open import UF.FunExt

open import UF.PropTrunc

open import UF.Subsingletons

module DomainTheory.Bilimits.LambdaCalculus

(pt : propositional-truncations-exist)

(fe : Fun-Ext)

(pe : Prop-Ext)

where

open PropositionalTruncation pt

open import UF.Base

open import UF.Subsingletons-Properties

open import DomainTheory.Basics.Dcpo pt fe U0
open import DomainTheory.Basics.Exponential pt fe U0
open import DomainTheory.Basics.Miscelanea pt fe U0
open import DomainTheory.Basics.Pointed pt fe U0
open import DomainTheory.Bilimits.Sequential pt fe U1 U1
open import DomainTheory.Lifting.LiftingSet pt fe U0 pe

open import Naturals.Order hiding (subtraction’)

open import Naturals.Addition renaming (_+_ to _+’_)

open import Notation.Order

open import DomainTheory.Bilimits.Dinfinity pt fe pe hiding (𝑀)

We have the non-trivial domain D→ and isomorphism D→ ↑dcpo (D→ =↓dcpo D→).

Below, we define the function abs from continuous endofunctions on D→ to D→. The function app
composes the inverse of abs with extracting the underlying function fron a continuous function.

1

abs : 〈 D→ =↑dcpo D→ 〉 → 〈 D→ 〉

abs = [D→ =↑dcpo D→ , D→]〈 𝐿-exp→’ 〉

app : 〈 D→ 〉 → 〈 D→ 〉 → 〈 D→ 〉

app = underlying-function D→ D→ ↓ [D→ , D→ =↑dcpo D→]〈 𝑀-exp→’ 〉

We define an abstract syntax for terms of the 𝑁-calculus, parametrized by the abstract syntax of
variables with a Bool-valued equality test.

The terms of the 𝑁-calculus include free variables, so their abstract syntax is not well-scoped.

open import MLTT.Bool using (Bool; if_then_else_)

module Terms

(Var : U0
.
)

(_==_ : Var → Var → Bool)

where

data Exp : U0
.
where

var_ : Var → Exp

!_·_ : Var → Exp → Exp

· : Exp → Exp → Exp

variable e : Exp

As usual in conventional Scott–Strachey style denotational semantics, bindings are modeled by
environments 𝑂 : Env that map variables v : Var to elements of semantic domains, and 𝑂 [x / v]
extends 𝑂 to map v to x.

We define Env simply as a function type, as we do not need it to be a domain.

Env = Var → 〈 D→ 〉

variable 𝑂 : Env

[/_] : Env → 〈 D→ 〉 → Var → Env

𝑂 [x / v] = 𝑁 v
↔
→ if v == v

↔
then x else 𝑂 v

↔

The denotation ↗ e ↘ of a term e is an element of the type Env → 〈 D→ 〉.

↗_↘ : Exp → Env → 〈 D→ 〉

!-is-continuous : ≃ e 𝑂 v → is-continuous D→ D→ (𝑁 x → ↗ e ↘ (𝑂 [x / v]))

↗ var v ↘ 𝑂 = 𝑂 v

↗ ! v · e ↘ 𝑂 = abs ((𝑁 x → ↗ e ↘ (𝑂 [x / v])) , !-is-continuous e 𝑂 v)

↗ e1 · e2 ↘ 𝑂 = app (↗ e1 ↘ 𝑂) (↗ e2 ↘ 𝑂)

!-is-continuous e 𝑂 v = {! !}

The definition of !-is-continuous e 𝑂 v appears to require lifting lubs of directed families through
the denotation of term e, and could be lengthy...

2

a continuous function is a pair:

 – an underlying function and

 – a proof of its continuity

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

abs : 〈 D→ =↑dcpo D→ 〉 → 〈 D→ 〉

abs = [D→ =↑dcpo D→ , D→]〈 𝐿-exp→’ 〉

app : 〈 D→ 〉 → 〈 D→ 〉 → 〈 D→ 〉

app = underlying-function D→ D→ ↓ [D→ , D→ =↑dcpo D→]〈 𝑀-exp→’ 〉

We define an abstract syntax for terms of the 𝑁-calculus, parametrized by the abstract syntax of
variables with a Bool-valued equality test.

The terms of the 𝑁-calculus include free variables, so their abstract syntax is not well-scoped.

open import MLTT.Bool using (Bool; if_then_else_)

module Terms

(Var : U0
.
)

(_==_ : Var → Var → Bool)

where

data Exp : U0
.
where

var_ : Var → Exp

!_·_ : Var → Exp → Exp

· : Exp → Exp → Exp

variable e : Exp

As usual in conventional Scott–Strachey style denotational semantics, bindings are modeled by
environments 𝑂 : Env that map variables v : Var to elements of semantic domains, and 𝑂 [x / v]
extends 𝑂 to map v to x.

We define Env simply as a function type, as we do not need it to be a domain.

Env = Var → 〈 D→ 〉

variable 𝑂 : Env

[/_] : Env → 〈 D→ 〉 → Var → Env

𝑂 [x / v] = 𝑁 v
↔
→ if v == v

↔
then x else 𝑂 v

↔

The denotation ↗ e ↘ of a term e is an element of the type Env → 〈 D→ 〉.

↗_↘ : Exp → Env → 〈 D→ 〉

!-is-continuous : ≃ e 𝑂 v → is-continuous D→ D→ (𝑁 x → ↗ e ↘ (𝑂 [x / v]))

↗ var v ↘ 𝑂 = 𝑂 v

↗ ! v · e ↘ 𝑂 = abs ((𝑁 x → ↗ e ↘ (𝑂 [x / v])) , !-is-continuous e 𝑂 v)

↗ e1 · e2 ↘ 𝑂 = app (↗ e1 ↘ 𝑂) (↗ e2 ↘ 𝑂)

!-is-continuous e 𝑂 v = {! !}

The definition of !-is-continuous e 𝑂 v appears to require lifting lubs of directed families through
the denotation of term e, and could be lengthy...

2

Analytic formalisation in AGDA
 – using TypeTopology/DomainTheory

17

The proof of the proposition isn't very deep – 
but it takes 3 pages in John Reynolds’s book…

https://martinescardo.github.io/TypeTopology/DomainTheory.index.html

λ-abstractions in continuation-passing style
 – e.g., in the SCHEME language standards

18

66 Revised7 Scheme

7.2.2. Domain equations

↵ 2 L locations
⌫ 2 N natural numbers

T = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L⇥ L⇥ T pairs
Ev = L*⇥ T vectors
Es = L*⇥ T strings
M = {false, true, null, undefined, unspecified}

miscellaneous
� 2 F = L⇥ (E* ! P ! K ! C) procedure values
✏ 2 E = Q+ H+ R+ Ep + Ev + Es + M+ F

expressed values
� 2 S = L ! (E⇥ T) stores
⇢ 2 U = Ide ! L environments
✓ 2 C = S ! A command conts
 2 K = E* ! C expression conts

A answers
X errors

! 2 P = (F⇥ F⇥ P) + {root} dynamic points

7.2.3. Semantic functions

K : Con ! E
E : Exp ! U ! P ! K ! C

E* : Exp* ! U ! P ! K ! C
C : Com* ! U ! P ! C ! C

Definition of K deliberately omitted.

E [[K]] = �⇢! . send (K[[K]])

E [[I]] = �⇢! . hold (lookup ⇢ I)
(single(�✏ . ✏ = undefined !

wrong “undefined variable”,
send ✏ ))

E [[(E0 E*)]] =
�⇢! . E*(permute(hE0i § E*))

⇢
!
(�✏* . ((�✏* . applicate (✏* # 1) (✏* † 1) !)

(unpermute ✏*)))

E [[(lambda (I*) �* E0)]] =
�⇢! . �� .

new � 2 L !
send (hnew � | L,

�✏*!00 .#✏* = #I* !
tievals(�↵* . (�⇢0 . C[[�*]]⇢0!0(E [[E0]]⇢

0!00))
(extends ⇢ I* ↵*))

✏*,
wrong “wrong number of arguments”i

in E)

(update (new � | L) unspecified �),

wrong “out of memory” �

E [[(lambda (I* . I) �* E0)]] =
�⇢! . �� .

new � 2 L !
send (hnew � | L,

�✏*!00 .#✏* � #I* !
tievalsrest

(�↵* . (�⇢0 . C[[�*]]⇢0!0(E [[E0]]⇢
0!00))

(extends ⇢ (I* § hIi) ↵*))
✏*
(#I*),

wrong “too few arguments”i in E)

(update (new � | L) unspecified �),

wrong “out of memory” �

E [[(lambda I �* E0)]] = E [[(lambda (. I) �* E0)]]

E [[(if E0 E1 E2)]] =
�⇢! . E [[E0]] ⇢! (single (�✏ . truish ✏! E [[E1]]⇢!,

E [[E2]]⇢!))

E [[(if E0 E1)]] =
�⇢! . E [[E0]] ⇢! (single (�✏ . truish ✏! E [[E1]]⇢!,

send unspecified ))

Here and elsewhere, any expressed value other than undefined
may be used in place of unspecified.

E [[(set! I E)]] =
�⇢! . E [[E]] ⇢ ! (single(�✏ . assign (lookup ⇢ I)

✏
(send unspecified )))

E*[[]] = �⇢! . h i

E*[[E0 E*]] =
�⇢! . E [[E0]] ⇢! (single(�✏0 . E*[[E*]] ⇢! (�✏* .  (h✏0i § ✏*))))

C[[]] = �⇢!✓ . ✓

C[[�0 �*]] = �⇢!✓ . E [[�0]] ⇢! (�✏* . C[[�*]]⇢!✓)

7.2.4. Auxiliary functions

lookup : U ! Ide ! L
lookup = �⇢I . ⇢I

extends : U ! Ide* ! L* ! U
extends =
�⇢I*↵* .#I* = 0 ! ⇢,

extends (⇢[(↵* # 1)/(I* # 1)]) (I* † 1) (↵* † 1)

wrong : X ! C [implementation-dependent]

send : E ! K ! C
send = �✏ . h✏i

single : (E ! C) ! K
single =
� ✏* .#✏* = 1 ! (✏* # 1),

wrong “wrong number of return values”

new : S ! (L+ {error}) [implementation-dependent]

hold : L ! K ! C
hold = �↵� . send (�↵ # 1)�

Lightweight formalisation in AGDA

19

Lightweight formalisation in AGDA

Abstract syntax grammar

‣ inductive datatype definitions

'Domain' definitions

‣ postulated bijections between type names and type terms

Semantic functions

‣ defined inductively in λ-notation

Auxiliary definitions
20

Lightweight formalisation in AGDA
 – abstract syntax for the untyped λ-calculus

21

Lightweight formalisation in AGDA
– postulating a domain for the untyped λ-calculus

22

Lightweight formalisation in AGDA
– semantic function for the untyped λ-calculus

23

Semantic Equations

D1
�
�! �

[D1 ! D1]

[[�]] 2 exp ! [(var ! D1)! D1]

[[v]] ⌘ = ⌘ v

[[�v. e]] ⌘ = (�x 2 D1. [[e]][⌘ | v : x])

[[e e0]] ⌘ = � ([[e]] ⌘) ([[e0]] ⌘)

We have to prove that all terms in this definition are in the required domains:

�x 2 D1. [[e]][⌘ | v : x] is a continuous function from D1 to D1

the so-defined [[�]] is a continuous function from Env to D1.

Lightweight formalisation in AGDA
 – testing the denotation of an untyped λ-term

24

Lightweight formalisation in AGDA
 – testing the denotation of an untyped λ-term

25

SCHEME

26

Lightweight formalisation of SCHEME
 – AGDA code: GitHub repo pdmosses/scheme25-agda/

Quite smooth

‣ my second attempt to use AGDA (2025)

‣ domains are arbitrary types

‣ functions on domains: defined in λ-notation, assumed continuous

‣ all assumptions declared as (sometimes unsatisfiable!) postulates

Encouraging results

‣ detected several wellformedness issues in the SCHEME standard
27

https://github.com/pdmosses/scheme25-agda/

Lightweight formalisation of SCM
 – AGDA code: GitHub repo pdmosses/xds-agda/

Quite smooth

‣ my current attempt to use AGDA (2026)

‣ carriers of domains are non-empty types

‣ functions on domains: defined in λ-notation, assumed continuous

‣ all assumptions declared as (hopefully satisfiable!) postulates

Safer notation

‣ consistent with the logical foundations of AGDA ?
28

https://github.com/pdmosses/xds-agda/

Lightweight formalisation of SCM
 – postulated types and elements

29

Lightweight formalisation of SCM
 – postulated types and elements

30

Lightweight formalisation of SCM
 – abstract syntax

31

Lightweight formalisation of SCM
 – domain equations

32

Lightweight formalisation of SCM
 – injections, inspections, projections of summands

33

Lightweight formalisation of SCHEME
 – semantic functions

34

Peter D. Mosses

R5RS

E! (lambda I ω* E0) " = E! (lambda (. I) ω* E0) "

The above semantic equation is non-compositional.

Agda
The following compositional semantics is the Agda embedding of
E! (lambda (I* . I) ω* E0) " with the empty sequence for I* and some
minor simpli!cations.

E! # lambda I ! !→ ! E0 $ " =
𝐿 𝑀 𝑁 ↑ 𝐿 𝑂 ↑
(new 𝑂 ↓-L) ↔↑
send (((new 𝑂 |-L) ,

(𝐿 𝑃→ 𝑁↗ ↑ tievalsrest
(𝐿 𝑄→ ↑ (𝐿 𝑀 ↗ ↑ C→! !→ " 𝑀 ↗ (E! E0 " 𝑀 ↗ 𝑁↗))

(extends 𝑀 〈 I 〉↗ 𝑄→))
𝑃→

0)) F-in-E)
𝑁
(update (new 𝑂 |-L) (𝑅 unspecified M-in-E) 𝑂) ,

wrong "out of memory" 𝑂

R5RS

E! (if E0 E1 E2) " =
𝐿𝑀𝑁 . E!E0 " 𝑀 (single (𝐿𝑃 . truish 𝑃 ↑ E!E1 "𝑀𝑁,

E!E2 "𝑀𝑁))

Agda

E! # if E0 ! E1 ! E2 $ " =
𝐿 𝑀 𝑁 ↑ E! E0 " 𝑀 (single (𝐿 𝑃 ↑ truish 𝑃 ↔↑ E! E1 " 𝑀 𝑁 ,

E! E2 " 𝑀 𝑁))

R5RS

E! (if E0 E1) " =
𝐿𝑀𝑁 . E!E0 " 𝑀 (single (𝐿𝑃 . truish 𝑃 ↑ E!E1 "𝑀𝑁,

send unspeci!ed 𝑁))

Here and elsewhere, any expressed value other than unde!ned may be used in place of unspeci!ed.

Agda

E! # if E0 ! E1 $ " =
𝐿 𝑀 𝑁 ↑ E! E0 " 𝑀 (single (𝐿 𝑃 ↑ truish 𝑃 ↔↑ E! E1 " 𝑀 𝑁 ,

send (𝑅 unspecified M-in-E) 𝑁))

-- Here and elsewhere, any expressed value other than ‘undefined‘ may be used in place of ‘unspecified‘.

12

Scheme25-Agda Literate Code Listing

3 Semantic Functions
R5RS

7.2.3. Semantic functions

Agda

module Semantic-Functions where

open import Notation
open import Abstract-Syntax
open import Domain-Equations
open import Auxiliary-Functions

R5RS
K : Con → E

E : Exp → U → K → C

E* : Exp* → U → K → C

C : Com* → U → C → C

Agda
The Agda embedding of semantic functions incorporates the double-bracket
notation in the names of the functions, where the underscore is a placeholder
for the syntactic argument:

postulate K! _ " : Con → E
E! _ " : Exp → U → K → C
E↑! _ " : Exp↑ → U→ (K → C)↑
C↑! _ " : Com↑ → U→ C→ C

The de!nition of K is deliberately omitted in R5RS, so the Agda embedding
declares K! _ " as a postulate.

The di"erence between the domain of denotations of expression sequences in
R5RS and in the Agda embedding is to support the compositional de!nition
of procedure calls given below.

R5RS
De!nition of K deliberately omitted.

Agda

-- Definition of K deliberately omitted.

R5RS

E!K " = 𝐿𝑀𝑁 . send (K!K ") 𝑁

Agda

E! con K " = 𝐿 𝑀 𝑁 → send (K! K ") 𝑁

The Agda embedding requires explicit construction of expressions from
constants by con.

9

Scheme25-Agda Literate Code Listing

3 Semantic Functions
R5RS

7.2.3. Semantic functions

Agda

module Semantic-Functions where

open import Notation
open import Abstract-Syntax
open import Domain-Equations
open import Auxiliary-Functions

R5RS
K : Con → E

E : Exp → U → K → C

E* : Exp* → U → K → C

C : Com* → U → C → C

Agda
The Agda embedding of semantic functions incorporates the double-bracket
notation in the names of the functions, where the underscore is a placeholder
for the syntactic argument:

postulate K! _ " : Con → E
E! _ " : Exp → U → K → C
E↑! _ " : Exp↑ → U→ (K → C)↑
C↑! _ " : Com↑ → U→ C→ C

The de!nition of K is deliberately omitted in R5RS, so the Agda embedding
declares K! _ " as a postulate.

The di"erence between the domain of denotations of expression sequences in
R5RS and in the Agda embedding is to support the compositional de!nition
of procedure calls given below.

R5RS
De!nition of K deliberately omitted.

Agda

-- Definition of K deliberately omitted.

R5RS

E!K " = 𝐿𝑀𝑁 . send (K!K ") 𝑁

Agda

E! con K " = 𝐿 𝑀 𝑁 → send (K! K ") 𝑁

The Agda embedding requires explicit construction of expressions from
constants by con.

9

Postulating Domain Theory

35

Bernhard Reus (1999)
 Formalizing Synthetic Domain Theory.

 J. Autom. Reason. 23(3-4): 411-444

36

Journal of Automated Reasoning 23: 411–444, 1999.
© 1999 Kluwer Academic Publishers. Printed in the Netherlands. 411

Formalizing Synthetic Domain Theory ⋆

The Basic Definitions

BERNHARD REUS
Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, D-80538
München

(Received: November 1996; accepted: November 1998)

Abstract. Synthetic Domain Theory (SDT) is a constructive variant of Domain Theory where all
functions are continuous following Dana Scott’s idea of “domains as sets”. Recently there have been
suggested more abstract axiomatizations encompassing alternative notions of domain theory as, for
example, stable domain theory.

In this article a logical and axiomatic version of SDT capturing the essence of Domain Theory à
la Scott is presented. It is based on a sufficiently expressive version of constructive type theory and
fully implemented in the proof checker LEGO. On top of this “core SDT” denotational semantics and
program verification can be – and in fact has been – developed in a purely formal machine-checked
way.

The version of SDT we have chosen for this purpose is based on work by Reus and Streicher and
can be regarded as an axiomatization of complete extensional PERs. This approach is a modification
of Phoa’s complete "-spaces and uses axioms introduced by Taylor.

Key words: domain theory, synthetic domain theory, type theory, formal verification, programming
logics, LCF.

1. Introduction

It was at the end of the seventies when Dana Scott started to promote the idea
that “domains are certain kinds of constructive sets” (cf. (Hyland, 1991)) where
all functions are continuous. His aim was to provide a simple setting suitable for
teaching domain theory to beginners.
In the following years a constructive alternative to classical domain theory has

been developed, baptized “Synthetic Domain Theory”, in order to express its “non-
analytical”, that is, axiomatic, spirit (cf. Section 3). It is also a distinguishing
feature of SDT that – by virtue of its ambient set theory – it gives rise to a program
logic suitable for verification. On the other hand, in Axiomatic Domain Theory
(Fiore and Plotkin, 1994; Freyd, 1991) one aims at axiomatizations of a good
category of domains without, however, providing an ambient logic for those.

⋆ This work was partially sponsored by the German Academic Exchange Office (DAAD) in the
project VIGONI.

Alex Simpson (2004)
 Computational adequacy for recursive types in models of intuitionistic set theory.
 Ann. Pure Appl. Log. 130(1-3): 207-275

37

274 A. Simpson / Annals of Pure and Applied Logic 130 (2004) 207–275

[6] M.P. Fiore, G.D. Plotkin, A.J. Power, Complete cuboidal sets in axiomatic domain theory, in: Proc. 12th
IEEE Symposium on Logic in Computer Science, 1997, pp. 268–279.

[7] M.P. Fiore, G. Rosolini, Domains in H , Theoret. Comput. Sci. 264 (2001) 171–193.
[8] P.J. Freyd, Recursive types reduced to inductive types, in: Proc. 5th IEEE Symposium on Logic in Computer

Science, 1990, pp. 498–507.
[9] P.J. Freyd, Algebraically complete categories, in: Category Theory, Proc. Como 1990, LNM, vol. 1488,

Springer, 1991, pp. 95–104.
[10] P.J. Freyd, Remarks on algebraically compact categories, in: Applications of Categories in Computer

Science, LMS Lecture Notes, vol. 177, CUP, 1992, pp. 95–106.
[11] P.J. Freyd, P. Mulry, G. Rosolini, D.S. Scott, Extensional PERs, Inform. Comput. 98 (1992) 211–227.
[12] J.-Y. Girard, Proof Theory and Logical Complexity, Bibliopolis, 1987.
[13] J.M.E. Hyland, The effective topos, in: L.E.J. Brouwer Centenary Symposium, North-Holland, Amsterdam,

1982, pp. 165–216.
[14] J.M.E. Hyland, First steps in synthetic domain theory, in: Category Theory, Proc. Como 1990, LNM,

vol. 1488, Springer, 1991, pp. 131–156.
[15] J.M.E. Hyland, P.T. Johnstone, A.M. Pitts, Tripos theory, Math. Proc. Cambridge Philos. Soc. 88 (1980)

205–232.
[16] B. Jacobs, Semantics of weakening and contraction, Ann. Pure Appl. Logic 69 (1994) 73–106.
[17] B. Jacobs, Categorical Logic and Type Theory, North-Holland, Amsterdam, 1999.
[18] M. Jibladze, A presentation of the initial lift algebra, J. Pure Appl. Algebra 116 (1997) 185–198.
[19] A. Joyal, I. Moerdijk, Algebraic Set Theory, LMS Lecture Notes, vol. 220, CUP, 1995.
[20] J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press, 1986.
[21] J.R. Longley, Realizability toposes and language semantics, Ph.D. Thesis, Department of Computer Science,

University of Edinburgh, 1995, Available as ECS-LFCS-95-332.
[22] J.R. Longley, A.K. Simpson, A uniform account of domain theory in realizability models, Math. Structures

Comput. Sci. 7 (1997) 469–505.
[23] Z. Luo, Computation and Reasoning: A Type Theory for Computer Science, Number 11 in International

Series of Monographs on Computer Science, OUP, 1994.
[24] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic: a First Introduction to Topos Theory,

Universitext. Springer-Verlag, 1992.
[25] P. Martin-Löf, Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis, 1984.
[26] G. McCusker, Games and Full Abstraction for a Functional Metalanguage with Recursive Types,

Distinguished Dissertation Series, Springer-Verlag, 1998.
[27] W.K.-S. Phoa, Effective domains and intrinsic structure, in: Proc. 5th IEEE Symposium on Logic in

Computer Science, 1990, pp. 366–377.
[28] W.K.-S. Phoa, Building domains from graph models, Math. Structures Comput. Sci. 2 (1992) 277–299.
[29] W.K.-S. Phoa, From term models to domains, Inform. Comput. 109 (1994) 211–255.
[30] A.M. Pitts, Relational properties of domains, Inform. Comput. 127 (1996) 66–90.
[31] G.D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5 (1977) 223–255.
[32] G.D. Plotkin, Denotational semantics with partial functions, in: Lecture Notes, C.S.L.I. Summer School,

1985.
[33] G.D. Plotkin, Algebraic compactness in an enriched setting, in: Invited talk, Workshop on Logic, Domains

and Programming Languages, Darmstadt, 1995.
[34] B. Reus, Th Streicher, General synthetic domain theory—a logical approach, Math. Structures Comput. Sci.

9 (1999) 177–223.
[35] G. Rosolini, Continuity and effectivity in topoi, Ph.D. Thesis, University of Oxford, 1986.
[36] A. Šc̆edrov, Intuitionistic set theory, in: Harvey Friedman’s Research on The Foundations of Mathematics,

Elsevier Science Publishers, 1985, pp. 257–284.
[37] D.S. Scott, Relating theories of the λ-calculus, in: To H.B. Curry, Academic Press, 1980, pp. 403–450.
[38] A.K. Simpson, Computational adequacy in an elementary topos, in: Computer Science Logic, Proceedings

CSL’98, LNCS, vol. 1584, Springer, 1999, pp. 323–342.
[39] A.K. Simpson, Elementary axioms for categories of classes (extended abstract), in: Proc. 14th IEEE

Symposium on Logic in Computer Science, 1999, pp. 77–85.

Safe lightweight formalization in AGDA?
 – future work (help welcome!)

Implement Synthetic Domain Theory in plain AGDA

‣ add a type of predomains

‣ allow unrestricted recursive domain definitions (?)

‣ prove that all postulated properties are consistent with MLTT

‣ prove that functions defined in λ-notation are always continuous

‣ …

38

Lightweight Formalisation of Denotational Semantics
 – summary

Examples

‣ inheritance

‣ the untyped λ-calculus (analytic, lightweight)

‣ SCHEME sublanguage SCM

Postulating domain theory

‣ lightweight

‣ synthetic

39

pdmosses.github.io/xds-agda/dev/
 – examples: untyped λ-calculus, SCM

40

https://pdmosses.github.io/xds-agda/dev/

Appendix

41

Postulating Domain Theory

42

Postulating Domains

43

Postulating Domains

44

Postulating Domains

45

