
Reuse and co-evolution in
CBS language specifications

Peter Mosses

Swansea University and TU Delft

LangDev Meetup at Amazon Amsterdam, 21–22 March 2019

pdmosses.github.io

http://langdevcon.org/
https://pdmosses.github.io

Formality of language specifications
Complete language specifications 
produced by language developers themselves

‣ syntax

- reasonably formal 😇

!2

124

7.7 Expressions

expr ::= value-path
| constant
| (expr)
| begin expr end
| (expr : typexpr)
| expr {, expr}+
| constr expr
| � tag-name expr
| expr :: expr
| [expr {; expr} [;]]
| [| expr {; expr} [;] |]
| { field [: typexpr] [= expr] {; field [: typexpr] [= expr]} [;] }
| { expr with field [: typexpr] [= expr] {; field [: typexpr] [= expr]} [;] }
| expr {argument}+
| prefix-symbol expr
| - expr
| -. expr
| expr infix-op expr
| expr . field
| expr . field <- expr
| expr .(expr)
| expr .(expr) <- expr
| expr .[expr]
| expr .[expr] <- expr
| if expr then expr [else expr]
| while expr do expr done
| for value-name = expr (to | downto) expr do expr done
| expr ; expr
| match expr with pattern-matching
| function pattern-matching
| fun {parameter}+ [: typexpr] -> expr
| try expr with pattern-matching
| let [rec] let-binding {and let-binding} in expr
| new class-path
| object class-body end

| expr # method-name
| inst-var-name
| inst-var-name <- expr
| (expr :> typexpr)
| (expr : typexpr :> typexpr)
| {< [inst-var-name = expr {; inst-var-name = expr} [;]] >}
| assert expr
| lazy expr
| let module module-name {(module-name : module-type)} [: module-type]

= module-expr in expr
| let open module-path in expr
| module-path .(expr)
| module-path .[expr]
| module-path .[| expr |]
| module-path .{ expr }
| module-path .{< expr >}

OCAML:

Formality of language specifications
Complete language specifications 
produced by language developers themselves

‣ syntax

- reasonably formal 😇

‣ semantics (static and dynamic)

- completely informal 🙄

- a few exceptions: ADA, SCHEME, 
STANDARD ML, WEBASSEMBLY

!3

128

If we ignore labels, which will only be meaningful at function application, this is equivalent to

function pattern1 -> . . . function patternn -> expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying
this function n times to the values v1 . . . vn, the values will be matched in parallel against the
patterns pattern1 . . . patternn. If the matching succeeds, the function returns the value of expr in
an environment enriched by the bindings performed during the matchings. If the matching fails,
the exception Match_failure is raised.

Guards in pattern-matchings

The cases of a pattern matching (in the function, match and try constructs) can include guard
expressions, which are arbitrary boolean expressions that must evaluate to true for the match case
to be selected. Guards occur just before the -> token and are introduced by the when keyword:

function pattern1 [when cond1] -> expr1
| . . .
| patternn [when condn] -> exprn

Matching proceeds as described before, except that if the value matches some pattern patterni
which has a guard condi, then the expression condi is evaluated (in an environment enriched by
the bindings performed during matching). If condi evaluates to true, then expri is evaluated and
its value returned as the result of the matching, as usual. But if condi evaluates to false, the
matching is resumed against the patterns following patterni.

Local definitions

The let and let rec constructs bind value names locally. The construct

let pattern1 = expr1 and . . . and patternn = exprn in expr

evaluates expr1 . . . exprn in some unspecified order and matches their values against the patterns
pattern1 . . . patternn. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun parameter1 . . . parameterm -> expr

in a let expression, one may instead write

let ident parameter1 . . . parameterm = expr

Recursive definitions of names are introduced by let rec:

let rec pattern1 = expr1 and . . . and patternn = exprn in expr

OCAML:

Reuse and co-evolution
CBS: component-based semantics

‣ semantics : language → funcons

- context-free, compositional

‣ funcons (fundamental constructs)

- open-ended library of fixed items

Developed by the PLANCOMPS project

‣ EPSRC funding 2011–16; now an open collaboration

!4

…

…

Claim: CBS can significantly reduce
the effort of formal semantics !

https://plancomps.org

Reusable components
Funcons – not languages !

‣ familiar programming concepts

‣ simpler than language constructs

‣ fixed definitions

‣ open-ended library

‣ unbiased to any language class 

Example:

Funcon
 sequential(_:(=>null-type)*, _:=>T) : =>T

Rule
 X ---> X'

 sequential(X, Y+) ---> sequential(X', Y+)
Rule
 sequential(null-value, Y+) ~> sequential(Y+)
Rule
 sequential(Y) ~> Y

!5

Co-evolution of languages and specifications

Translations

‣ language → funcons

- dependence on language syntax

‣ context-free translation

- compositional

- specified by equations 

Examples:

Semantics eval[[_:exp]] : => ld-values

Rule eval[[E1 ':=' E2]] =
 assign(eval[[E1]], eval[[E2]])

Rule eval[['!' E]] = assigned(eval[[E]])

Rule eval[[E1 ';' E2]] =
 sequential(effect(eval[[E1]]), eval[[E2]])

Rule eval[['while' E1 'do' E2]] =
 while-true(eval[[E1]], eval[[E2]])

!6

Tool support for CBS specifications
Creating, editing, browsing

‣ grammars, funcons, translations

Generating prototypes

‣ language parser

‣ funcon interpreter

‣ translator : language → funcons

- hence language interpreter

CBS workbench

‣based on SPOOFAX

!7

L.T.van
Binsbergen

etal./JournalofLogicaland
Algebraic

M
ethods

in
Program

m
ing

103
(2019)184–212

205

Fig. 5. The IDE for CBS in action. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Demo
Incremental specification

‣ LD: a demo language

- literals 
lambda-calculus 
arithmetic

- references

- threads x

No changes to previous rules!

Grammar:

Syntax E:exp ::= int
 | id
// Call-by-value lambda-calculus:
 | 'lambda' id '.' exp
 | exp exp
 | 'let' id '=' exp 'in' exp
 | '(' exp ')'
// Arithmetic and Boolean expressions:
 | exp '+' exp
 | exp '*' exp
 | exp '/' exp
 | exp '<=' exp
 | exp '&&' exp
 | 'if' exp 'then' exp 'else' exp
// References and imperatives:
 | 'ref' exp
 | exp ':=' exp
 | '!' exp
 | exp ';' exp
 | '(' ')'
 | 'while' exp 'do' exp
// Multithreading:
 | 'spawn' exp
 | 'join' exp

!8

Current status
CBS-beta [plancomps.github.io/CBS-beta]

‣Funcons-beta

‣Languages-beta

- toy: IMP, SIMPLE, MINIJAVA

- medium: OCAML-LIGHT, SL

- pending: IMP++, SIMPLE-THR

• multithreading

CBS-Editor

‣ SPOOFAX/ECLIPSE plugin

‣ under development…

Funcons.Tools

‣ HASKELL package

‣ generates interpreters for funcons
from their definitions

!9

https://plancomps.github.io/CBS-beta/

Conclusion
CBS: component-based semantics framework [plancomps.github.io]

‣ unified specification language with solid theoretical foundations

‣ support for reuse and co-evolution

‣ library of funcon definitions

CBS language workbench

‣ creating, editing, browsing specifications

‣ generating editors, translators, interpreters
!10

CBS Availability

CBS-beta July 2018

threads April 2019

CBS workbench June 2019 ?

major case
studies 2020 ?

https://plancomps.github.io

‣ Executable component-based semantics
 ‣ Software meta-languages and CBS

Recent references

!11

Journal of Logical and Algebraic Methods in Programming 103 (2019) 184–212

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Executable component-based semantics

L. Thomas van Binsbergen a,∗, Peter D. Mosses b,c, Neil Sculthorpe d

a Department of Computer Science, Royal Holloway, University of London, TW20 0EX, Egham, United Kingdom
b Department of Computer Science, Swansea University, SA2 8PP, Swansea, United Kingdom
c EEMCS, Programming Languages, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, the Netherlands
d Department of Computing and Technology, Nottingham Trent University, NG11 8NS, Nottingham, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2018
Received in revised form 18 December 2018
Accepted 21 December 2018
Available online 4 January 2019

Keywords:
Programming languages
Formal semantics
Reuse
Components
Tool support

The potential benefits of formal semantics are well known. However, a substantial amount
of work is required to produce a complete and accurate formal semantics for a major
language; and when the language evolves, large-scale revision of the semantics may be
needed to reflect the changes. The investment of effort needed to produce an initial
definition, and subsequently to revise it, has discouraged language developers from using
formal semantics. Consequently, many major programming languages (and most domain-
specific languages) do not yet have formal semantic definitions.
To improve the practicality of formal semantic definitions, the PLanCompS project has
developed a component-based approach. In this approach, the semantics of a language
is defined by translating its constructs (compositionally) to combinations of so-called
fundamental constructs, or ‘funcons’. Each funcon is defined using a modular variant of
Structural Operational Semantics, and forms a language-independent component that can
be reused in definitions of different languages. A substantial library of funcons has been
developed and tested in several case studies. Crucially, the definition of each funcon is
fixed, and does not need changing when new funcons are added to the library.
For specifying component-based semantics, we have designed and implemented a meta-
language called CBS. It includes specification of abstract syntax, of its translation to
funcons, and of the funcons themselves. Development of CBS specifications is supported
by an integrated development environment. The accuracy of a language definition can be
tested by executing the specified translation on programs written in the defined language,
and then executing the resulting funcon terms using an interpreter generated from the CBS
definitions of the funcons. This paper gives an introduction to CBS, illustrates its use, and
presents the various tools involved in our implementation of CBS.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

New programming languages and domain-specific languages are continually being introduced, as are new versions of
existing languages. Each language needs to be carefully specified, to determine the syntax and semantics of its programs.
Context-free aspects of syntax are usually specified, precisely and succinctly, using formal grammars; in contrast, semantics
(including static checks and disambiguation) is generally specified only informally, without use of precise notation. Infor-

* Corresponding author.
E-mail addresses: ltvanbinsbergen@acm.org (L.T. van Binsbergen), p.d.mosses@swansea.ac.uk (P.D. Mosses), neil.sculthorpe@ntu.ac.uk (N. Sculthorpe).

https://doi.org/10.1016/j.jlamp.2018.12.004
2352-2208/© 2019 Elsevier Inc. All rights reserved.

Journal of Visual Languages and Computing 50 (2019) 39–48

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

Softwaremeta-language engineering and CBS
Peter D. Mosses1
Department of Computer Science, Computational Foundry, Bay Campus, Swansea University, Swansea SA1 8EN, United Kingdom

A R T I C L E I N F O

Keywords:
Semantics of programming languages
Meta-languages
Modularity

A B S T R A C T

The SLE conference series is devoted to the engineering principles of software languages: their design, their
implementation, and their evolution. This paper is about the role of language specification in SLE. A precise
specification of a software language needs to be written in a formal meta-language, and it needs to co-evolve
with the specified language. Moreover, different software languages often have features in common, which
should provide opportunities for reuse of parts of language specifications. Support for co-evolution and reuse
in a meta-language requires careful engineering of its design.

The author has been involved in the development of several meta-languages for semantic specification,
including action semantics and modular variants of structural operational semantics (MSOS, I-MSOS). This
led to the PLanCompS project, and to the design of its meta-language, CBS, for component-based semantics.
CBS comes together with an extensible library of reusable components called ‘funcons’, corresponding
to fundamental programming constructs. The main aim of CBS is to optimise co-evolution and reuse of
specifications during language development, and to make specification of language semantics almost as
straightforward as context-free syntax specification.

The paper discusses the engineering of a selection of previous meta-languages, assessing how well they
support co-evolution and reuse. It then gives an introduction to CBS, and illustrates significant features. It also
considers whether other current meta-languages might also be used to define an extensible library of funcons
for use in component-based semantics.

1. Introduction

In general, it is good engineering practice to produce a full design
specification of a new artefact before starting its construction. If the
design needs to be adjusted during the construction, or a new version
of the artefact is subsequently required, the design specification is
updated accordingly. Moreover, a design often makes extensive use of
pre-existing components that have precisely specified properties.

In software language engineering, however, developers seldom pro-
duce complete and precise language design specifications. This seems to
be at least partly because of the effort required to specify a major soft-
ware language in full detail, and subsequently co-evolve the specifica-
tion together with the specified language. Perhaps a component-based
approach could reduce the effort, and encourage language developers
to specify the designs of new languages before implementing them?

The rest of this section recalls some general features of formal lan-
guage specification, and discusses the relationship between formality
and co-evolution. Section 2 examines some previous meta-languages,
pointing out issues with co-evolution and reuse. Section 3 introduces
CBS, a component-based framework for language specification; it il-
lustrates how CBS facilitates co-evolution, then gives an overview of

E-mail address: p.d.mosses@swansea.ac.uk.
1 Present address: EEMCS, Programming Languages, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.
2 Software languages and meta-languages can both be textual and/or graphical; we here consider purely textual languages, for simplicity.

the initial library of reusable components provided with CBS. Sec-
tion 4 indicates the current status of CBS and plans for its further
development.

This article is based on the author’s keynote at SLE 2017, extend-
ing [1]. Its contribution is an analysis of the support for co-evolution
and reuse in selected meta-languages, together with an explanation
of relevant CBS features; it does not present previously unpublished
research results.

1.1. Formal language specification

A language specification defines requirements on implementations:
which texts an implementation is to accept as well-formed, and what
behaviour should be exhibited when executing such texts.2 For con-
ventional high-level programming languages, well-formedness may be
divided into lexical syntax, context-free phrase structure, and context-
sensitive constraints, all to be checked before program execution starts;
the behavioural requirements generally include the relation between
input and output, but exclude properties such as how much time or
space program execution should take. Context-sensitive constraints are

https://doi.org/10.1016/j.jvlc.2018.11.003
Received 13 November 2018; Accepted 19 November 2018
Available online 20 November 2018
1045-926X/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1016/j.jvlc.2018.11.003

