1 Thank you for still being here!

Lightweight Agda Formalization This is a lightweight talk about work in progress
of Denotational Semantics
Peter D Mosses

TU Delft (visitor)

Swansea University (emeritus)

TYPES 2025, Glasgow, Scotland, 9-13 June 2025

About the topic 2 Let me start by clarifying the topic of the talk

- Ligkh ight Agda Formalization of Denotational Semantics

Lightweight Agda

> requiring relatively little effort or Agda expertise
Formalization

» of (new or existing) mathematical definitions

Denotational semantics

> with ively-defined Scott ins, fixed points, A-notation

- o 3 This denotational semantics was published in 1989, and hadn't been
Original motivation )
A Denotational Semantics of Inheritance meChan |Ca| Iy CheCked .

and its Correctness
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This paper presents a denotational model of in

_ o e | expected it to be quite straightforward to formulate the definitions and proofs
purpose of inh:;it;:;cvein;ri}:e cor alsooafn the mo@eLlixz‘ e in A g d a. B

semantics of inh based upon the method-1
algorithm of object-oriented languages.

. . 4 Denotational semantics isn't as popular these days as it was in the 70s and 80s
Denotational semantics .
- Scott-Strachey style ‘ L ‘@
Types of denotations are (Scott-)domains - L L . fl II h H f
» pointed cpos (e.g, w-complete, directed-complete, continuous lattices) et me brl e y reca t e mal n eatu res
» recursively defined — without guards, up to isomorphism
Denotations are defined in typed A-notation
» functions on domains are continuous maps

» endofunctions on domains have least fixed points



https://dl.acm.org/doi/proceedings/10.1145/74877

Models of the untyped A-calculus

- based on Scott's domain D_,

Some mathematical presentations:

» Dana Scott (1970,1972): continuous lattices, D,

+ Joseph Stoy (1977): universal domain Pm

» Samson Abramsky and Achim Jung (1994): (pre)domain theory

+ John Reynolds (2009): Theories of Programming Languages, cpos, D,
Some formalizations:

~ Bernhard Reus (1994): using Extended Calculus of Constructions, in Lego

> Tom de Jong (2021): using Univalent Type Theory (TypeTopology), in Agda

Dana Scott initially tried to prove that the untyped lambda-calculus has no set-
theoretic models
but then he discovered the bilimit construction of the D-infinity model...

Apart from mathematical presentations of the model, some formalizations have
been developed

Reynolds: Theories of Programming Languages
- denotational semantics of the untyped A-calculus

isomory phism continuous maps.
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Here is a mathematical presentation of a denotational semantics of the untyped
lambda-calculus from 2009

In denotational semantics of larger programming languages, isomorphisms are
usually left implicit

Agda formalization
- using TypeTopology/DomainTheory (Tom de Jong)

We have the non-trivial domain De, and isomorphism D ~IP° (Do, =90 D).

abs: (D =P D) = (Do)
abs = [ Do =4° D, Do | 7-expos’ )

app: (Do ) = (Do ) = (Do)
app = underlying-function D D © [ Deo , Do =29P° D, |( -expes’ )

a continuous function is a pair:
— an underlying function and
- a proof of its continuity

Tom de Jong's formalization is based on directed-complete posets.

Agda formalization
- using TypeTopology/DomainTheory (Tom de Jong)

[_]:Exp—Env— (D)

A-is-continuous : V e p v — is-continuous Do Do (Ax =[] (0 [x/V]))
[varv]p=pv

Lavelp=abs((nosLel G Le/v] ) is-continuous e p v])

[e-exlp=app(lelp)(lelr)

A-is-continuouse pv= {! !}

The proof of the proposition that lambda is continuous isn't very deep, but
takes 3 pages in John Reynolds book

| would personally find it an excessive amount of work to formalize the proof in
Agda...


https://www.cs.yale.edu/homes/hudak/CS430F07/LectureSlides/Reynolds-ch10.pdf

Lightweight Agda formalization

- modules

Abstract syntax grammar
» inductive datatype definitions
'Domain’' definitions
between names and
Semantic functions
» functions defined inductively in A-notation

Auxiliary definitions

terms

... S0 I've developed a lightweight approach

The next few slides illustrate the approach. The Agda definitions are included in
the abstract, and available online

10 - i i -
Lightweight Agda formalization In Scott lStra.che'y style, a'lbstract syntax .|s d'eflnedlby a context-free grammar.
- abstract syntax Its formalization in Agda is a corresponding inductive datatype.
data Exp : Set where

var_ : Var — Exp . . . . . .

i Var — B0  Ex For simplicity, this datatype uses ordinary functional notation for the

app : Exp — Exp — Exp

constructors.
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Lightweight Agda formalization

- a 'domain’

open import Function

using (Inverse; < ) public
open Inverse {{ ... }}

using (to; from) public

postulate

Doo : Set bijection Agda functions

postulate

instance iso :{Doc ¢+ (Doo — Doc)

Here we assume D-infinity to be an ordinary Agda type with a bijection to the
type of all Agda functions on D-infinity

In this example, the assumptions are satisfied when D-infinity has a single
element.
In all other examples, the corresponding assumptions are unsatisfiable.

The highlighted Agda magic declares the inverse functions of the bijection,
which are all we need...



Lightweight Agda formalization

- semantic function

D Ll [Doc — D]
Env = Var — Doo [-1 € emp— [(var — Do) — Dac]

Wn = o
Dw.eln = O € Do [elln|v: 2))
“In = ¢(lelm (1T

[ 1:Exp— Env— Do

[varv  Jep=pv
[lamve ] p={from(ad—[e](o[d/v]))
[apperex ] p=@([erlpr)(lelp)
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The semantic function corresponds directly to that defined by Reynolds!

The Agda type-checker insists on making the bijection explicit

Lightweight Agda formalization

- testing denotations

to-from-elim : V {f} — to (from f) =f
to-from-elim = inverse' iso refl

{-# REWRITE to-from-elim #-}

check-convergence @ (Ax; . x;5)((Axy . XX (Axy . XX)) = X5
[ app (lam (x 1) (var x 42))
(app (lam (x 0) (app (var x 0) (var x 0)))

(lam (x 0) (app (var x 0) (var x 0)))) |
=[varx42]

check-convergence = refl - potentially unsafe!
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Agda can also check whether terms have equivalent denotations

Other examples: PCF, Scheme

- pdmosses.github.io/xds-agda/

= Denotational Semantics in Agda

Examples
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Safe lightweight Agda formalization?

- future work

Implement SDT (Synthetic Domain Theory)
> use plain Agda
» embed Agda types as predomains
» assume only properties consistent with MLTT
» make functions implicitly continuous

> allow unrestricted recursive domain definitions
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https://pdmosses.github.io/xds-agda/

