Checking a Denotational Semantics of Scheme in Agda

Peter D. Mosses
Delft University of Technology
Delft, Netherlands
Swansea University
Swansea, United Kingdom
p.d.mosses@tudelft.nl

Abstract

The authoritative standards for the algorithmic language
Scheme are the Scheme reports. Most of the revised reports
include a denotational semantics for primitive Scheme ex-
pressions and selected procedures.

This paper first traces the history of the semantic defini-
tion, and summarizes its form and content. It then presents a
shallow embedding of denotational semantics into the func-
tional programming language Agda. The embedding is il-
lustrated by showing how fragments of the denotational
semantics given in the fifth revised Scheme report (R’RS)
are embedded into Agda.

Type-checking the Agda embedding of a semantics indi-
rectly tests its wellformedness. Agda reported several issues
with the embedding of the complete denotational semantics
from R°RS. The paper suggests changes to the semantics that
would address the reported issues, as well as further changes
that could improve the conciseness and perspicuity of the
definitions.

This paper is dedicated to the memory of
Christopher Strachey (1916—-1975)

CCS Concepts: «+ Theory of computation — Denota-
tional semantics; Type theory; « Software and its engi-
neering — Semantics; Functional languages.

Keywords: Denotational semantics, Scheme, wellformed-
ness, Agda, shallow embedding

ACM Reference Format:

Peter D. Mosses. 2025. Checking a Denotational Semantics of Scheme
in Agda. In Proceedings of the 26th ACM SIGPLAN International
Workshop on Scheme and Functional Programming (Scheme °25), Oc-
tober 12—-18, 2025, Singapore, Singapore. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3759537.3762694

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Scheme °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2162-5/25/10
https://doi.org/10.1145/3759537.3762694

1 Introduction

The initial report on Scheme language was published in
December 1975. Congratulations to the Scheme developers
and users on the 50th anniversary!

1.1 The Scheme Reports
Quoting from the Scheme Standards web page [28]:

The Scheme programming language was intro-
duced in the 1975 paper, Scheme: An Interpreter
for Extended Lambda Calculus. Since then it has
been improved and extended through many
rounds of standardization. The authoritative
standards are the Scheme reports. Their names
follow the convention Revised" Report on the
Algorithmic Language Scheme, abbreviated R"RS.

In the abstract of the initial report, Sussman and Steele
indicate how significantly Scheme extends the lambda calcu-
lus [38]:

Inspired by ACTORS [...], we have implemented
an interpreter for a LISP-like language, SCHEME,
based on the lambda calculus [...], but extended
for side effects, multiprocessing, and process syn-
chronization.

The reference manual in the first section is remarkably con-
cise: just five pages! The programming examples in the sec-
ond section raise issues of semantics, which the authors seek
to clarify with reference to the lambda calculus and the fixed
point operator in the third section.

The first Revised Report on Scheme (1978, [9]) has the
subtitle “a dialect of LISP”, and gives a complete “user man-
ual” for the language (22 pages) accompanied by explanatory
notes (10 pages). The second, R?RS (1985, [5]) is about double
the length, and promises that “formal definitions of the syn-
tax and semantics of Scheme will be included in a separate
report”. Those definitions were provided in R*RS (1986, [24]),
which defines the lexical and context-free syntax of the com-
plete language in an extended BNF, and “provides a for-
mal denotational semantics for the primitive expressions of
Scheme and selected built-in procedures”. The denotational
semantics was repeated with only minor changes in R*RS
(1991, [6]), the IEEE Standard (1991, [27]), R°RS (1998, [10]),
and R’RS (2013, [31]).

https://orcid.org/0000-0002-5826-7520
https://en.wikipedia.org/wiki/Christopher_Strachey
https://doi.org/10.1145/3759537.3762694
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759537.3762694
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Scheme °25, October 12-18, 2025, Singapore, Singapore

RCRS (2007, [34]) provides an operational semantics in-
stead of the denotational semantics, and covers much more
of the language. It is based on a paper by Matthews and
Findler [11] where they state that “denotational semantics
has fallen out of favor among programming language re-
searchers”, and “requires much more mathematical sophisti-
cation than operational semantics, making it less appropriate
for a standard intended for use by working programmers”.

However, lambda-abstractions have now become quite
familiar to programmers in various mainstream languages;
similarly for recursive type definitions, and defining func-
tions by pattern-matching. And definitions of domains and
semantic functions can easily be understood without know-
ing anything at all about their mathematical foundations
(including the structure of domains and the notion of conti-
nuity). When formulating a denotational semantics, it can
simply be assumed that domain equations always have well-
defined solutions, and that when functions on a domain are
defined in lambda-notation they always have (least) fixed
points (as in so-called synthetic domain theory [25, 30, 32],
which is based on constructive logic). See also Queinnec’s
motivation for denotational semantics [22, §5].

The R°RS Rationale stresses the need for the formal se-
mantics to specify precisely that the order of expression
evaluation in procedure calls is implementation dependent
[33, §12]:

The denotational semantics in R°RS has several
problems, most seriously its incomplete treat-
ment of the unspecific evaluation order of ap-
plications: the denotational semantics suggests
that a single unspecified order is used. Modelling
nondeterminism is generally difficult with deno-
tational semantics, and an operational semantics
allows specifying the unspecified evaluation or-
der precisely.

Despite that issue, R’RS reverted to giving a denotational
semantics of core Scheme constructs, without changing the
treatment of unspecified evaluation order from R3RS.

1.2 Checking the Formal Semantics of Scheme

The operational semantics given in R°RS is executable. As
stated there in the introduction to the semantics [34, App. A]:

To help understand the semantics and how it
behaves, we have implemented it in PLT Redex.
The implementation is available at the report’s
website.! All of the reduction rules and the meta-
functions shown in the figures in this semantics
were generated automatically from the source
code.

https://www.r6rs.org/

Peter D. Mosses

In fact the denotational semantics given in R*RS was pro-
duced in much the same way. As stated in the introduction
to the semantics [24, §7.2]:

The semantics in this section was translated by
machine from an executable version of the se-
mantics written in Scheme itself.

Presumably its authors checked that the executable ver-
sion computed the expected results for a sufficiently di-
verse suite of test programs. Van Straaten later implemented
the semantics from R°RS in Scheme [36], and checked its
consistency with the original definition by translating the
Scheme code back to denotational syntax using Queinnec’s
L2T tool [23]. However, reformulating a denotational seman-
tics in a dynamically-typed language such as Scheme does
not check that the semantic definition is actually wellformed.

1.3 Wellformedness of Denotational Definitions

A difficulty with checking the wellformedness of denota-
tional definitions is the current lack of a precise description
of the meta-notation used in the literature. In the 1970s,
the author proposed a meta-notation MSL for denotational
semantics [12]. MSL has an unambiguous grammar and a
formal (meta-circular) definition of its semantics; it was a
precursor of the meta-notation DSL of SIS (Semantics Im-
plementation System) [14], which was used in courses on
denotational semantics in several universities, although the
implementation of SIS was too inefficient for execution of the
denotational semantics of larger languages [2]. A DSL defi-
nition of a mini-language [8] was included in the successful
bid for the contract to develop the Ada language. However,
a more conventional mathematical meta-notation for deno-
tational semantics is generally preferred in the scientific
literature, including the Scheme reports.

Outline. This paper makes the following contributions:

e Section 2 traces the origin of the denotational seman-
tics in R°RS, and summarizes its structure and content.
Section 3 presents a shallow embedding of denota-
tional semantics into Agda, illustrated with fragments
from R°RS. Familiarity with the Agda language [41]
would be helpful for this section.

Section 4 discusses several issues with the wellformed-
ness of the denotational semantics in R°RS that were
reported by Agda when checking its embedding, as
well as some further issues noticed by the author.
Section 5 suggests changes to improve the wellformed-
ness, conciseness, and perspicuity of the denotational
semantics given in the Scheme reports.

Section 6 explains the relationship between the shal-
low Agda embedding of denotational semantics pre-
sented in Section 3 and previous work on defining
denotational semantics in Agda.

Section 7 concludes, and mentions potential future work.

https://www.r6rs.org/

Checking a Denotational Semantics of Scheme in Agda

2 Denotational Semantics of Core Scheme

R3RS (1986) defines the lexical and context-free syntax of
the complete Scheme language in an extended BNF, and
“provides a formal denotational semantics for the primitive
expressions of Scheme and selected built-in procedures”. The
definitions given in R*RS, the IEEE Standard, R°RS, and R’RS
are based directly on the R3RS version.

Section 2.1 describes the origin of the denotational seman-
tics given in R®RS. Section 2.2 summarizes the concepts and
notation. Section 2.3 gives and overview of the contents and
structure of the definition.

2.1 Origin
Remarks by Sussman and Steele in their original presentation

of Scheme in 1975 already foreshadowed the development
of a denotational semantics for Scheme:

Can we make these ideas more precise? One tra-
ditional approach is to model the computation
with lambda calculus. [...] The “usual” lambda
calculus construct for defining recursive func-
tions is a rather obscure object called the “fixed
point” operator.

In the first Revised Report, they also considered the impact
of evaluation order in lambda calculus:

{Normal Order Loses}

Our definition of BLocK exploits the fact that
SCHEME is an applicative-order (call-by-value)
language in order to enforce sequencing. Suss-
man has proved that one cannot do a similar
thing in a normal-order (call-by-name) language:
Theorem: Normal order, as such, is incapable of
enforcing sequencing (whereas applicative order
is) in the form of the BLock construct.
(Informal) proof: [...]

Most of the details of the denotational semantics of prim-
itive expressions and selected procedures in the Scheme
reports originate in the work of Muchnick and Pleban [20].
(The treatment of environments in Pleban’s dissertation [21]
is somewhat different.) In personal correspondence, Clinger
recalled the development of the formal semantics in R*RS:

Jonathan Rees wrote the executable version. [It]
was based upon a draft of the denotational se-
mantics I had written, which was itself based
upon the Muchnick and Pleban semantics. That
semantics appears within my paper with the title
“The scheme 311 compiler an exercise in deno-
tational semantics”, which was published in the
proceedings of the 1984 Lisp Conference and is
cited by the R®RS.

[...] Jonathan Rees then wrote a small Scheme
program that translated his Scheme code into
the LaTeX that went into print.

Scheme °25, October 12-18, 2025, Singapore, Singapore

Regarding the remark cited in Section 1.2, Clinger added:

[...] the purpose of that remark in R3RS §7.2
was to emphasize that the denotational seman-
tics had been tested by creating an executable
version of it, and that errors in the printed ver-
sion should be unlikely because the typesetting
had been done by machine translation from the
executable semantics.

A note in the current KIEX sources for R’RS explains that
for subsequent Scheme reports, the semantics was modified
without going back to the executable version, so the remark
was removed.

§7.2 of R*RS differs from the same section of R*RS mainly
by distinguishing between mutable and immutable objects.
Clinger spotted one other difference:

In the R3RS semantics, the empty list (which
the semantics refers to as null) counts as false,
mainly because Texas Instruments insisted upon
that for compatibility with Common Lisp. In the
R*RS semantics, the empty list does not count as
false. This difference shows up in the definition
of the auxiliary function truish.

The denotational semantics included as an annex in the
IEEE standard for Scheme [27] appears to be based on the
definitions in R*RS, but suffers from significant formatting
issues. The version in R°RS differs from R*RS by adding the
semantics of the procedures values and call-with-values.
R’RS added a domain P of dynamic points, and changed the
denotations of expressions to be functions of P, to support
the definition of the semantics of the dynamic-wind pro-
cedure; this required minor adjustments to most semantic
equations and auxiliary function definitions.

2.2 Concepts and Notation

The standards refer to Stoy’s 1977 textbook on denotational
semantics [35] for a description of concepts and notation
used in the definitions. They provide the following concise
summary of the notation used for sequences, McCarthy con-
ditional, environment construction, and injections and pro-
jections between sums of domains and their summands.

(...) sequence formation

sl kth member of the sequence s (1-based)
#s length of sequence s

s§t concatenation of sequences s and ¢
stk drop the first kK members of sequence s

t = a,b McCarthy conditional “if ¢ then a else b”
plx/i] substitution “p with x for i”
xinD injection of x into domain D
x|D projection of x to domain D

Tennent’s 1976 article in Comm. ACM [39] is an alter-
native reference for the concepts and notation used in the
denotational semantics of Scheme.

Scheme °25, October 12-18, 2025, Singapore, Singapore

2.3 Contents and Structure

The formal semantics in the Scheme standards defines the ab-
stract syntax and denotations of identifiers, procedure calls,
lambda-expressions, if-expressions, and assignment expres-
sions; literals are omitted because “an accurate definition
[...] would complicate the semantics without being very
interesting”.

It does not give an abstract syntax for programs and def-
initions, but explains that the meaning of a program P “in
which all variables are defined before being referenced or
assigned” is the denotation of an expression formed from
I*, P’ and (undefined) “where I* is the sequence of variables
defined in P, P’ is the sequence of expressions obtained by re-
placing every definition in P by an assignment, (undefined)
is an expression that evaluates to undefined”.

The formal semantics also defines auxiliary functions cor-
responding to the code of selected built-in procedures.

Abstract syntax. The formal semantics starts with a con-
cise context-free grammar defining the abstract syntax of
the core expressions; commands are defined to be the same
as expressions.

Domain equations. The abstract syntax is followed by
domain equations that define named domains recursively
in terms of (continuous) function domains, (cartesian) prod-
uct domains, (separated) sum domains, (finite) sequence do-
mains, and flat domains. Some domains are declared but left
undefined: locations, natural numbers, symbols, characters,
numbers, answers, and errors.

Semantic functions. The definition of the semantic func-
tions starts by declaring the domains of denotations for con-
stants, expressions, expression sequences, and command
sequences. The denotations of constants are omitted; the
denotations of the other sorts of constructs are defined by
semantic equations, mostly in continuation-passing style.

Auxiliary functions. The formal semantics concludes
with the definitions of auxiliary functions. Some of these
functions are used in the semantic equations; the rest of
them correspond to built-in procedures. Several functions
are considered implementation-dependent, and therefore not
defined: the continuation wrong for error reports, the storage
allocator new, and the arbitrary permutations permute and
its inverse unpermute.

3 Embedding in Agda

This section presents a shallow embedding of denotational
semantics into Agda. The embedding is illustrated by show-
ing fragments of the denotational semantics in R°RS and
the corresponding Agda code. A listing of the embedding of
the complete denotational semantics in R°RS is available as
supplemental material [19].

Peter D. Mosses

Readers are assumed to be familiar with the main con-
cepts of denotational semantics, and with the meta-notation
summarized in Section 2.2. Familiarity with the Agda lan-
guage [40, 41] would also be helpful.

In denotational semantics, the type of a named function is
usually declared before giving the definition of the function,
and function definitions are implicitly recursive, but func-
tions can be used before they have been declared; similarly
for domain equations. R°RS exploits this flexibility to present
the definitions of the semantic functions before those of the
auxiliary functions used in them.

A denotational definition is usually divided into the same
four sections as in R°RS. Its embedding into Agda naturally
defines each section as a separate module, specifying which
other modules it imports.

3.1 Notation

An additional module declares an Agda version of the conven-
tional notation for domain constructors and their associated
functions, including the operators summarized in Section 2.2.
For brevity, the declarations and definitions presented below
omit notation whose use is not illustrated in this paper; they
have also been reformulated to ease their presentation.

Domain = Set
variable D E : Domain

Set is the fundamental universe in Agda. Its elements
are types, including function types and empty types. For
a shallow embedding of denotational semantics in Agda
such that functions on domains can be defined in A-notation,
domains also need to be types.

Domains are always non-empty, and in principle, the uni-
verse Domain of domains should be a new universe, disjoint
from Set. However, Agda does not support declaration of
new universes: adding one would involve extending Agda.

So here, Domain is defined to be equal to Set, and the
variables D and E range over arbitrary types. The main dis-
advantage is that applications of domain constructors to
ordinary types in Set are not reported as errors by the type-
checker.

postulate L : D
postulate fix : (D — D) — D

In Agda, a postulate simply declares a name to have a
specified type, without defining its value. The postulate that
all domains D have a distinguished element named L ensures
that all domains are non-empty — but the lack of distinction
between domains and ordinary types implies also that empty
types are non-empty, so the postulate is obviously unsound.
The postulated function type for fix is also unsound: when
D is an empty type, fix must map the empty function on D
to some element of D.

As stated in the Agda language reference [40], introduc-
ing postulates is in general not recommended: a preferable

Checking a Denotational Semantics of Scheme in Agda

way to work with assumptions is to declare them as module
parameters. When using Agda as a proof checker, uninstanti-
ated module parameters become explicit premises of proved
propositions; in contrast, dependence of proved propositions
on postulates is implicit, which can be misleading.

Here, however, Agda is primarily used as a type checker,
and declaring unsound assumptions as postulates does not
undermine the soundness of type correctness. Moreover,
using module parameters instead of postulates would have
significant disadvantages: module parameters cannot be used
in rewrite rules; it is tedious to supply a large number of
parameters when importing a module (as illustrated by the
Agda code accompanying [15]); and module parameters may
cause major performance problems in specific cases.

So in the shallow embedding of denotational semantics
into Agda, all assumptions are formulated as postulates.

postulate _+.L : Set — Domain

postulate : (S: Set) = S +L

data Bool : Set where true false : Bool

Bool L = Bool +L

data Nat : Set where zero : Nat; suc : Nat — Nat
NatL = Nat +.L

postulate _==1_ :Natl — Nat — Bool L

postulate _— _,_ :BoolL—->D —D —D

Underscores in function names indicate argument posi-
tions. The domain S +.L consists of elements 7 s for s : S and
the element L. The ternary McCarthy conditional operator
b — d, d’ uses a longer arrow than function types.

postulate _+_ : Domain — Domain — Domain
postulate _ x _ : Domain — Domain — Domain
postulate _,_ :D—>E—>DxE

postulate _[*1:DxE — D

postulate _|?2:D xE —> E

A

: Domain — Nat — Domain

The notation D + E for sum domains and D x E for product
domains is as usual. For any n : Nat, D * n consists of n-tuples
dy, ..., d, of elements of D.

variable n : Nat

postulate _ : Domain — Domain
postulate () :D*

postulate (_) :(D*sucn)—D*

postulate # :D* — NatL
postulate _§ :D*—>D*—>D"*
postulate _| _:D* — Nat — D
postulate _¥_:D* — Nat—> D"

The above notation for functions on domains D * of (finite,
possibly-empty) sequences is as in the Scheme reports. Note
that angle brackets (_) form sequences from tuples; ordinary
parentheses are used to group tuples, when needed.

Scheme °25, October 12-18, 2025, Singapore, Singapore

3.2 Abstract Syntax

The definition of abstract syntax in R°RS is as follows:

K € Con constants, including quotations
Ielde identifiers (variables)

E € Exp expressions

I' e Com =Exp commands

Exp — K | I | (Ey E®)
| (lambda (I*) T* Eo)
| (lambda (I* . I) T* Eg)
| (lambda I T Eg)
| (if Eq E; Ep) | (if Eo Ep)
| (set! I E)

Abstract syntax definitions in Agda are less concise: sorts
of terms are defined as inductive datatypes, and variables are
declared separately from the types over which they range:

postulate Con :Set -- constants

variable K : Con

postulate Ide :Set -- identifiers

variable | : lde

data Exp :Set -- expressions

variable E : Exp

Com = Exp -- commands

variable T : Com

data Ide* :Set -- identifier sequences
variable [|* : lde*

data Exp* :Set -- expression sequences
variable E* :Exp*

data Com* : Set -- command sequences
variable T* : Com”

Note that Ide* (with no space after Ide) is a simple type
name, not an application of the sequence domain constructor.

The names of the constructors of the datatype use under-
scores to indicate argument positions, but adjacent under-
scores need to be separated by other characters, and ordinary
parentheses are not allowed in names. Most of the construc-
tor names used in the embedding of RORS are formed from
banana-brackets and the Unicode character ° ’ that represents
a space. The types of the constructors have to be curried.

data Exp where

con : Con — Exp

ide :lde — Exp

o) : Exp — Exp* — Exp

:lde* — Com™ — Exp — Exp
)._]:1de*—lde » Com*— Exp — Exp
:lde - Com™ — Exp — Exp
: Exp — Exp — Exp — Exp
: Exp — Exp — Exp
:lde — Exp — Exp

—u—u—

Scheme °25, October 12-18, 2025, Singapore, Singapore

Syntactic sequence sorts are defined as datatypes in the same
way, e.g.:

data Exp* where

: Exp”

_ :Exp — Exp* — Exp*

u

—

3.3 Domain Equations

The only required properties of domains for defining a de-
notational semantics are that domains can be defined recur-
sively (up to isomorphism), and that functions on domains
have well-defined fixed-points. For the shallow embedding of
denotational definitions into Agda, the usual mathematical
structure of domains as cpos, and the restriction of function
spaces to continuous functions, are simply ignored. Thus
domains are embedded as ordinary Agda types; functions
on these types are always defined in lambda-notation, and
assumed to have well-defined fixed-points.

In Agda, however, the type-checker does not terminate
when type constants are recursively defined. The embed-
ding of recursively defined domains into Agda avoids non-
termination by leaving one or more types undefined, then
postulating functions between these types and their intended
structure.

RORS specifies the following domain equations.

ael locations
veN natural numbers
T = {false, true} booleans
Q symbols
H characters
R numbers
Ep =L XLXT pairs
E, =L*XT vectors
Es =L*XT strings
M = {false, true, null, undefined, unspecified}
miscellaneous

$peF =LX(E* >K—>C) procedure values
€ekE =Q+H+R+E; +E, +Es+M+F
expressed values
stores
environments

ceS =L—o (EXT)
pel =Ide - L

feC =S—>A command conts
keK =E*—>C expression conts
A answers
X errors

As with abstract syntax, the Agda embedding of domain
equations is less concise. The following excerpts illustrate
various possibilities:

postulate L : Domain
variable « : L
N : Domain
variable v : N

Peter D. Mosses

T : Domain
Ep : Domain
M : Domain
F : Domain

variable ¢ : F
postulate E : Domain
variable ¢ : E

S : Domain
variable o : S
U : Domain
variable p : U
C : Domain
variable 6 : C
K : Domain

variable « : K
postulate A : Domain
E* -E 5
variable ¢*: E*

The following Agda type definitions correspond directly
to recursive definitions of domains in R°RS.

data Misc : Set where
false true null undefined unspecified : Misc

N = NatL

T =BoollL

Ep=LxLxT

M = Misc +L

F =Lx(E*>K—>C)

——E = ... +Ep+ ... +M+F
S =L—>(E><T)

U =lde—>L

C =S—>A

K =E"—>C

Note especially the following points:

e Unspecified domains such as L are simply postulated
in the embedding as elements of the type Domain.

e The embeddings of almost all other domains are types
defined directly using the standard notation for do-
main constructors (sums, products, functions) and flat
domains (truth values, natural numbers) presented in
Section 3.1.

e The flat domain M is defined by adding L to a Scheme-
specific datatype of values Misc.

e The domains F and E are mutually recursive. Their
embedding avoids recursive type definitions by postu-
lating E as an undefined Agda type, together with in-
jections and projections between E and its summands.

e The domain name E* abbreviates the application of
the domain constructor _* to E.

Checking a Denotational Semantics of Scheme in Agda

The injections, tests, and projections for the Agda embed-
ding of the sum domain E need to be declared individually,
e.g.
postulate

_Ep-in-E:Ep— E

_€Ep :E —>T

_|FEp :E —Ep

_F-in-E :F —E
_e-F :E T
_|-F :E —>F

The Agda embedding of the domain equations in R°RS is
completed by postulating the operators used in the defini-
tions of semantic and auxiliary functions, e.g.:

postulate

3.4 Semantic Functions

The Agda embedding of semantic function declarations and
definitions is quite direct. Agda notation for A-abstractions
differs from the conventional notation used in R°RS by using
an arrow ‘—’ instead of a dot between the bound variable(s)
and the body; Agda also requires names to be separated (by
layout or parentheses) from adjacent names and keywords.
RORS declares the following semantic functions:
K :Con — E
E:Exp - U—->K—>C
E :Exp* > U—->K—>C
C:Com*—-»U—-C—C
Their Agda embedding incorporates the double-bracket nota-
tion [[- - -] in the names of the functions, using an underscore
as a placeholder for the syntactic argument:

postulate K[_]: Con — E
E[_] :Exp>U—-K—C
E_]:Exp* > U - (K- C)
C[_]:Com* -U—->C—>C

(The reason for the difference between the type of denota-
tions of expression sequences in R°RS and in the embedding
is explained in Section 5.2.)

The definition of K is deliberately omitted in R°RS. This
is indicated in the Agda embedding by declaring K| _] as a
postulate.

The semantic equation for constant expressions K is:

E[K] = Apx . send (K[K]) x

In Agda, the only difference is the explicit construction of
expressions from constants by con:

E[conK]=24pk—send (K[K])«

Scheme °25, October 12-18, 2025, Singapore, Singapore

The semantic equation for identifiers I in R°RS is:

e[1] =
Apk . hold (lookup p 1)
(single(Ae . € = undefined —
wrong “undefined variable”,
send €))

Formally, the test € = undefined used above involves an
implicit projection from E to the flat domain M, which has
to be made explicit in the Agda embedding, as well as the
injection 1 from Misc to M:

Elidel]=Apk—
hold (lookup p 1)
(single (A € = ((¢ |-M) ==M 5 undefined) —
wrong "undefined variable" ,
send € k))

The semantic equation for conditional expressions in R°RS
uses the auxiliary function truish : E — T, which is defined
as the strict map taking the false value in the summand M of
E to the value false in T, and all other non-1 arguments to
truein T.

8[[(lf E() E] Ez)]] =
Apk . E[Eo] p (single (Ae . truishe — E[E; Jpx,
E[E; [px))

In the embedding, no projections or injections need to be
added:

SﬂqionuEluEZ DH=/1,DK—)
E[Eo] p (single (A € — truishe — E[E; | p k,
E[Ex] px))

Agda embeddings of the semantic equations for procedure
call and lambda-abstraction are illustrated in Section 5.

3.5 Auxiliary Functions

The following examples of auxiliary functions from R’RS
and their Agda embeddings illustrate most of the additional
notation required by the embedding.

R°RS includes:

send:E >K—>C
send = Aek . k{€)
Its Agda embedding is direct

send:E—-K—C
send=Aek >k (e)

The function single is used to convert ordinary continua-
tions to continuations that take one-element sequences:

Scheme °25, October 12-18, 2025, Singapore, Singapore

single: (E—> C) —» K
single =
Ape* #e* =1 > ¢Y(e* | 1),

3 »
wrong “wrong number of return values

Its embedding uses the infix operator _ | _ to select an ele-
ment of E from a sequence in E*:

single: (E— C) - K
single =
AYe > @#e ==L 1)— (e |1),
wrong "wrong number of return values"

The following definition in R°RS involves also the store:

hold:L - K—C
hold = Aaxo . send (oa | 1)ko

The term oa denotes a pair of a location and a truth-value.
In the Agda embedding, pairs and sequences are different
types, and the postfix operator _ |*1: E x T — E needs to
be used to select the first component of a pair:

hold:L - K— C
hold=Aako—send(cal*) ko

The function takefirst is one of several that are defined
recursively in R°RS. Its type is not declared, but for well-
formedness it needs to be E* — N — E*, where N is the flat
domain of natural numbers.

takefirst =
Mn.n=0— (), (] 1)§ (takefirst (I T 1)(n—1))

The Agda embedding defines takefirst inductively in its sec-
ond argument. This is possible because that argument is the
length of a sequence of identifiers, which is of type Nat.

takefirst : E* — Nat — E*
takefirst €* 0 =()
takefirst " (sucn) = (" | 1) § takefirst (¢" ¥ 1) n

Agda requires recursive function definitions to be evi-
dently terminating. Functions that recurse on sequences €”
in the postulated type E* cannot be defined by pattern-
matching on the structure of €*, and their embedding re-
quires explicit use of the fixed-point operator fix. For exam-
ple, R°RS defines the auxiliary function list as:
list:E* > K—>C
list =

Ae*x . #e€* = 0 — send null k,

list (€™ 1 1) (single(Ae . cons(e* | 1, €)x))

Its Agda embedding is:
list:E* > K— C
list = fix A list” —

Ae" k= (# € ==L 0) — send (y null M-in-E) « ,

list’ (" 1)
(single (A e — cons ((" | 1), €) «))

10

Peter D. Mosses

4 Wellformedness Issues

This section discusses various issues with the wellformed-
ness of the denotational semantics in R°RS, mostly revealed
by its embedding in Agda. The next section suggests changes
that would address the issues.

The Agda embedding described in the previous section
generally preserves the types of denotations. It also preserves
the lambda-notation in the definitions of auxiliary functions
and denotations, except that omitted injections and projec-
tions between E and its summands need to be inserted. The
main changes to the abstract syntax notation used in the
semantic equations concern the symbols in the names of
abstract syntax constructors.

Type-checking the Agda embedding of R°RS thus indi-
rectly tests the definitions in R’RS for wellformedness. The
closeness of the notation used in the Agda embedding (largely
due to exploiting the Agda support for Unicode) facilitates
pinpointing the origin in R°RS of reported issues.

However, the Agda type system has significant differences
from the mathematical underpinnings of denotational se-
mantics. For example, Agda does not accept recursive type
definitions, whereas domains can be recursively defined (up
to isomorphism) by domain equations in denotational seman-
tics. And Agda accepts recursive function definitions only
when it can prove that applications always terminate. On
the other hand, dependent types, implicit arguments, and in-
stance arguments make type-checking in Agda significantly
more general than in domain theory.

Thus type-checking an Agda embedding can result in
both false positives and false negatives. Nevertheless, it has
turned out to be sufficiently precise in practice for testing
the wellformedness of the formal semantics in R°RS.

4.1 Non-compositionality

A denotational semantics is supposed to be compositional,
where [26, §1.2]:

A semantics is said to be compositional when
the meaning of each phrase does not depend on
any property of its immediate subphrases except
the meanings of these subphrases.

As stated in the Agda language reference [40]:

Agda accepts only these recursive schemas that
it can mechanically prove terminating

The simplest case of this is primitive recursion, which corre-
sponds directly to compositionality when defining semantic
functions. However, Agda also accepts functions defined by
structural recursion, which allows recursive application to
arbitrarily deeper subphrases. So acceptance of a recursive
definition of the Agda embedding of a semantic function
does not check that it is actually compositional. On the other
hand, Agda’s rejection of a definition because it cannot prove
it terminating shows that it cannot be compositional.

Checking a Denotational Semantics of Scheme in Agda

Agda rejects the embedding of the following two seman-
tic equations from R°RS due to potential non-termination,
which implies that they are non-compositional (as can any-
way be easily seen from the applications of &* and & to
arguments that are not simply variables):

E[Ey EN] =
Apk . E*(permute({Ey) § E¥))
p
(Ae* . ((Ae* . applicate (¢* | 1) (e* 1) k)
(unpermute €)))

E[(lambda I T* Eg)]| =& (lambda (. I) T* Ep)]

In both cases, it is straightforward to replace them by com-
positional equations, as suggested in Section 5.

4.2 Type Errors

Two significant type errors in R’RS are detected by Agda
when type-checking the embedding.

Ironically, one of them concerns the auxiliary function
wrong: its type is declared to be X — C, but it is applied to
strings, and X is left unspecified. Agda reported the error that
String is not a subtype of X when checking applications of
wrong.

The other type error is due to omission of an argument.
The very last auxiliary function definition in R°RS is:

cwv:E* > K—>C
cwv =
twoarg (Aerexk . applicate €1()(Ae* . applicate €, €))

[call-with-values]

The type of applicate isE — E* — K — C, so the second
occurence of applicate above needs to be applied to a contin-
uation. (This error was already noticed by Van Straaten in
2002, in connection with implementing the R°RS semantics
in Scheme [36]. The same error occurs also in R’RS.)

As noted in Section 3, the types of the auxiliary functions
takefirst and dropfirst are not declared in R°RS. This was re-
ported as an error when type-checking the Agda embedding.

Two wellformedness errors that were not detected by type-
checking the Agda embedding concern the use of literal sets
as domains in domain equations:

T = {false, true}
M = {false, true, null, undefined, unspecified}

and in the type of an auxiliary function:

new:S — (L + {error})

But the lack of detection of such errors is unsurprising, since
domains are not distinguished from ordinary Agda types in
the embedding, as explained in Section 3.1.

11

Scheme °25, October 12-18, 2025, Singapore, Singapore

4.3 Overloaded Names

In R°RS, the names false and true are overloaded as elements
of the domains T and M. The definition of truish uses false in
both domains:

truish:E —> T
truish = Ae . € = false — false, true

The first occurrence of false can be seen to be in M, since
€ € E and M is a summand of E; and the second occurrence
is required to be in T by the type of truish. As Agda does
not support implicit injections, explicit injections have to be
added in the Agda embedding of R°RS.

However, the lack of injections or projections in the condi-
tion € = false was reported as an error — because the equality
test is allowed only on flat domains, and e€E = - - - +F, which
is not a flat domain. It is necessary to check first whether ¢
is in the summand M, then test its projection to M for equality
to false. See Section 5 for the suggested definition, which is
embedded straightforwardly in Agda.

In RORS the notation s | k is used not only for selecting
the kth member of the sequence s, but also for selecting com-
ponents of elements of product domains. Similarly, _[_/_] is
used as an operation both on environments p and on stores o.
Notational variants of these operators were introduced in
their Agda embedding to eliminate such type-inconsistent
overloading.

5 Suggestions

This section suggests changes for improving the wellformed-
ness, conciseness, and perspicuity of the denotational se-
mantics in the Scheme reports. Most of the suggestions are
independent of the n in R"RS; the fragments quoted below
were all copied from RRS [10]. The suggestions are listed in
order of occurrence in §7.2.

5.1 Domain Equations

T = {false, true} booleans
M = {false, true, null, undefined, unspecified}

It is confusing to use the same names for values in different
domains. If T were to be a summand of E, false and true could
be removed from M.

X errors

As discussed in Section 4.2, the type of the auxiliary func-
tion wrong is X — C, but wrong is applied to strings, and X is
left undefined. This wellformedness issue could be addressed
by defining X to be a flat domain containing the literal strings
used as error messages. However, the Agda embedding of
applications of wrong to literal strings would then need ex-
plicit injections of strings into the flat domain; to avoid these
tedious injections, the embedding of the argument type of
wrong is an Agda datatype of strings, rather than a domain.

Scheme °25, October 12-18, 2025, Singapore, Singapore

5.2 Semantic Functions

See Section 4.1 for discussion of non-compositionality issues.
The following compositional semantics of procedure calls
permutes thunks instead of raw expressions:

8[[(Eo E*)]] =
Apk . forces (permute({E[Eo | p) § E[E*] p))
(Ae* . ((Ae* . applicate (¢*' | 1) (¢ T 1) k)
(unpermute €*)))

where

E :Exp* - U— (K- 0O)*
&11=2.0
E'[EoE*] =2p . (E[Eo] p) § E[E] p

permute : (K — C)* - (K — C)*
[implementation-dependent]
unpermute : E* — E* [inverse of permute]

forces: (K— C)* > K —C

forces =
Ak # =0 > Kk (),
(AY;
(single(Ae . forces ({* 1 1)
(Ae” .k ((e) § €7))))
The Agda embedding is:
E[(E E)]=
Apk—
forces (permute ((E[Eo] p) §E*[E"] p))

Ae"—
((A € — applicate (¢*" | 1) (¢”" T 1) k)
(unpermute €%)))

S*H_H:Exp*_)u_)(l(_)c)*
&L l=1p—(

postulate permute : (K — C)* —» (K — C)*

postulate unpermute : E* — E*

forces: (K—> C)* 5 K— C
forces = fix A forces’ —
Ak > #E ==10)—« (),
(G)]
(single (A € — forces” ({* 1 1)
(e —>x((e)§e)))

12

Peter D. Mosses

Anglade, Lacrampe, and Queinnec [1] suggest denotations
of procedure calls that generate all possible permutations
of their subexpression denotations, and collect sequences of
the results obtained by composing them sequentially.

The right-hand side of the non-compositional semantic
equation for lambda-abstractions could simply be expanded
using &[(lambda (I* . I) T* Eo)] with I* empty:

E[(lambda I T* Eg) | =
Apk . Ao .
newo el —
send ({newo | L,
Ae*k’ . tievalsrest
(Aa* . (Ap’ . C[T*]’ (B[Ea Jp'x"))
(extends p (I) a*))
e
0) in E)
K
(update (new o | L) unspecified o),
wrong “out of memory” o

5.3 Auxiliary Functions

The correction for the type error reported in the definition
of cwv, discussed in Section 4.2, appears to be as follows:

cwv:E*—>K—>C
cwv =
twoarg (Aejezk . applicate €1) (Ae* . applicate €, €* k))

[call-with-values]

The following declarations should be added before the
corresponding definitions:

takefirst : E* — N — E*
dropfirst : E* - N — E*

The auxiliary function new : S — (L + {error}) is rather
awkward to use, because it requires explicit application to
the current store o, which is usually left implicit in the
continuation-passing style adopted by the Scheme semantics.
Moreover, it is tedious to test new o € L, then use newo | L
when true or continue with wrong “out of memory” ¢ when
false. And care is needed in subsequent applications of new
to refer to an updated store where the new location is marked
as in use.

A simple way to express storage allocation in continuation-
passing style is to define an auxiliary function alloc to al-
locate a new location and update it to an initial value, as
follows:

alloc:E - (L—>C) —»C
alloc =
Aeyo.newoel —
x (newo | L) (update (newo | L) € o),
wrong “out of memory”o

Checking a Denotational Semantics of Scheme in Agda

The definition of the auxiliary function cons in R’RS is:

cons:E* - K—>C
cons =
twoarg (Aejezk0 . newo e L —
(Ao’ .newo’ eL —
send ((newo | L, newd’ | L, true)
inE)
K
(update(new o’ | L)ez0”),
wrong “out of memory”c”)
(update(new o | L)e10),
wrong “out of memory”o)

Using alloc would significantly simplify the definition:

cons =
twoarg (Aerezx . alloc €1 (Aa .
allocey (Aay .
send ({at1, az, true) in E) x)))

Similarly, using alloc unspecified would simplify the defini-
tions of the denotations of Scheme lambda-abstractions.

Tennent [39, §7.5] suggests defining all primitive store
functions to take continuations. Apart from notational con-
venience, this makes it possible for the store functions to
terminate program execution simply by discarding their con-
tinuation argument. In fact the functions hold and assign in
R5RS are already defined to take continuations; the declara-
tion of new could easily be adjusted to do the same.

6 Related Work

The Agda TypeTopology library is based on univalent foun-
dations. It includes modules for Scott domain theory, and
illustrates their use in denotational definitions of PCF and the
untyped A-calculus [7]. This Agda formalization of domain
theory corresponds directly to the usual set-theoretic defini-
tions: a domain consists of a carrier type together with a par-
tial order relation, its least element, and proofs of the required
completeness properties; a continuous function between do-
mains is an underlying function between their carrier types,
paired with a proof of its continuity. Currently, the formaliza-
tion requires definitions of denotations in A-notation to in-
clude explicit continuity proofs, and subsequently discard the
proof terms when applying functions. This prevents direct
embedding of A-notation from conventional denotational
definitions, and seems quite impractical for formalizing the
denotational semantics of larger languages (especially in the
continuation-passing style used in the Scheme reports).

The author previously developed a relatively lightweight
formalization of denotational semantics in Agda, and used it
to detect (minor) wellformedness issues in a semantics of in-
heritance in object-oriented systems [15]. Recursive domain
definitions were embedded as (unsatisfiable) assumptions
of isomorphisms between Agda types, circumventing the
issues with recursive definitions of Agda types.

13

Scheme °25, October 12-18, 2025, Singapore, Singapore

A major drawback in [15] was the widespread insertion of
isomorphisms in function definitions. In the present paper,
almost all domain equations are embedded as Agda type def-
initions, and no isomorphisms between domains are needed.
However, when embedding the denotational semantics of the
untyped A-calculus in Agda [17], the domain D, is required
to be isomorphic to the domain Do, — Do, and there the
isomorphism needs to be explicit in the embedding.

The author has recently completed a shallow Agda em-
bedding of a denotational semantics for a simple form of
eval expressions, and presented it in a paper [16] in the
proceedings of OlivierFest *25. The semantics is based on an
adaptation of a suggestion made by Clinger [4] more than
40 years ago. A language that includes eval is defined incre-
mentally, starting from a particularly basic sublanguage Scm
of the core Scheme expressions whose denotational seman-
tics is defined in the Scheme reports. ScmQ extends Scm with
literal quotations, then ScmQE adds eval. An archive of the
Agda source code is available as supplemental material [18]
accompanying the cited paper. The current version of the
Agda embedding of ScmQE includes also tentative abstract
syntax and semantics for Scheme programs and definitions.

7 Conclusion

After recalling the history of the Scheme reports, this paper
focused on the denotational semantics of primitive Scheme
constructs and selected procedures. It introduced a shallow
embedding of the semantics in Agda, developed systemati-
cally from the definitions given in §7.2 of R°RS. Checking the
embedding using the Agda proof assistant detected various
issues with the wellformedness of the original definitions.
Suggestions for how to address those issues have been made,
as well as for further changes that could improve the per-
spicuity and conciseness of the semantics.

Regardless of whether there will ever be any further revi-
sions of the current Scheme language and its report, it would
surely be worthwhile to replace the denotational semantics
in R7RS by a corrected version that addresses at least the non-
compositionality and the omitted argument in the definition
of cwv. Systematic use of continuation-passing style would
significantly simplify some of the semantic equations with
only minor changes to the definitions of the auxiliary func-
tions. An extension to include the semantics of programs,
definitions, and literal truth-values and quotations could be
based on their Agda embedding in [18]

Clearly, any update of the denotational semantics in R’RS
should be carefully checked — not only for wellformedness,
but also for soundness of the specified semantics relative
to reference implementations of Scheme. The shallow em-
bedding of denotational semantics in Agda has been useful
for detecting wellformedness issues, and might be used as
a basis for proving properties of denotations, but it seems
unsuitable for executing programs to test their behavior.

Scheme °25, October 12-18, 2025, Singapore, Singapore

Various systems were developed from the late 1970s to
the 1990s for implementing the denotational semantics of
programming languages, based on formal specifications for
the syntax and wellformedness of the meta-notation, but
the author is not aware of any that are still in use. It could
be interesting to develop a deep embedding of denotational
semantics in some modern language workbench, and use it
to make the current Scheme semantics truly executable.

To some extent, the shallow embedding of denotational
semantics in Agda presented in this paper corresponds to
Strachey’s original use of untyped A-calculus to formally
specify the semantics of programming languages [37]: in the
absence of a model of the untyped A-calculus, he relied on
reasoning about A-expressions using their laws, from which
the unfolding property of the fixed point combinator can be
derived. He subsequently embraced the models provided by
Scott’s theory of domains, where the fixed point operator is
defined as the limit of the Kleene sequence, and proved to
satisfy unfolding. Synthetic domain theory (SDT) [25, 30, 32]
reconciles postulated axioms with domain-theoretic models
and constructive logic; a formalization of SDT in Agda would
avoid the unsound postulates used in the current shallow
embedding of denotational semantics.

Acknowledgments

This paper is dedicated to the memory of Christopher Stra-
chey, who passed away 50 years ago, aged 58. He accom-
plished a great deal as a computing pioneer in the 1950s and
1960s [3]. By 1964, he was already using the lambda calculus
to specify the semantics of programming constructs [37].
From 1969, in collaboration with Dana Scott, he developed
the denotational style of formal semantics [29, 35, 39]. He
was a hugely inspiring advisor for my doctoral studies [13].

I would like to thank William Clinger, John D. Ramsdell,
Anton van Straaten, and Mitchell Wand for sharing their
recollections of the origin and evolution of the denotational
semantics included in the Scheme reports, as summarized in
Section 2.1.

Thanks also to Jesper Cockx, who provided helpful com-
ments on a draft of the submitted paper, and subsequently
on a draft of the discussion in Section 3.1 of the advantages
of using postulates instead of module parameters.

I am grateful to the anonymous reviewers for their percep-
tive comments on the submitted paper and their constructive
suggestions for its improvement.

Data-Availability Statement

The Agda code in the accompanying artifact [19] is a shal-
low embedding of the denotational semantics presented in
R3RS [10]. The relationship of the embedding to the defini-
tions in the Scheme report is explained in Section 3 of the
present paper.

14

Peter D. Mosses

The artifact includes a literate version of the embedding,
where the Agda code is interspersed with explanatory prose
(mostly copied from the paper).

The literate version also interleaves the original definitions
from R°RS with their embedding into Agda, to facilitate
comparison.

After downloading the artifact, the type-correctness of all
the Agda code can be checked by executing a single com-
mand. The development of soundness tests for the embed-
ding is work in progress.

Highlighted listings of both the plain and literate versions
of the Agda embedding are available in PDF as supplemental
material accompanying this paper. They were generated
using the artifact.

The artifact is an archive of a release of the public GitHub
repository pdmosses/scheme25-agda.

References

[1] Sophie Anglade, Jean-Jacques Lacrampe, and Christian Queinnec. 1994.
Semantics of combinations in Scheme. SIGPLAN Lisp Pointers VII, 4
(Oct. 1994), 15-20. doi:10.1145/382109.382669

[2] James Bodwin, Laurette Bradley, Kohji Kanda, Diane Litle, and Uwe

Pleban. 1982. Experience with an experimental compiler generator

based on denotational semantics. In Proceedings of the 1982 SIGPLAN

Symposium on Compiler Construction (Boston, Massachusetts, USA)

(SIGPLAN ’82). Association for Computing Machinery, New York, NY,

USA, 216-229. doi:10.1145/800230.806997

Martin Campbell-Kelly. 1985. Christopher Strachey, 1916-1975: A

Biographical Note . IEEE Annals of the History of Computing 7, 01 (Jan.

1985), 19-42. doi:10.1109/MAHC.1985.10001

William Clinger. 1984. The Scheme 311 compiler: An exercise in

denotational semantics. In Proceedings of the 1984 ACM Symposium

on LISP and Functional Programming (Austin, Texas, USA) (LFP ’84).

Association for Computing Machinery, New York, NY, USA, 356-364.

doi:10.1145/800055.802052

William Clinger. 1985. The revised revised report on Scheme, or an

uncommon Lisp. Technical Report MIT Artificial Intelligence Memo

848. MIT. https://standards.scheme.org/official/r2rs.pdf Also pub-

lished as Computer Science Department Technical Report 174, Indiana

University, June 1985..

William Clinger and Jonathan Rees. 1991. Revised* Report on the

Algorithmic Language Scheme. Lisp Pointers IV, 3 (July-September

1991), 1-55. https://standards.scheme.org/official/r4rs.pdf

Tom de Jong. since 2019. TypeTopology/DomainTheory (Agda mod-

ules). Retrieved Augest 25, 2025 from https://martinescardo.github.io/

TypeTopology/DomainTheory.index.html

Véronique Donzeau-Gouge, Gilles Kahn, and Bernard Lang. 1978. A

complete machine-checked definition of a simple programming language

using denotational semantics. Technical report RR-330. IRIA, Rocquen-
court. https://inria.hal.science/hal-04716568/

Guy Lewis Steele Jr. and Gerald Jay Sussman. 1978. The revised report on

Scheme: A dialect of Lisp. Technical Report MIT Artificial Intelligence

Memo 452. MIT. https://standards.scheme.org/official/r1rs.pdf

Richard Kelsey, William Clinger, and Jonathan Rees. 1998. Revised®

Report on the Algorithmic Language Scheme. Higher-Order and Sym-

bolic Computation 11, 1 (1998), 7-105. https://standards.scheme.org/

official/r5rs.pdf

[11] Jacob Matthews and Robert Bruce Findler. 2008. An operational

semantics for Scheme. J. Funct. Program. 18, 1 (Jan. 2008), 47-86.
doi:10.1017/S0956796807006478

E

—

[4

flaav)

(5

—

(6

—_

7

—

[8

[}

[

—

[10]

https://github.com/pdmosses/scheme25-agda/
https://doi.org/10.1145/382109.382669
https://doi.org/10.1145/800230.806997
https://doi.org/10.1109/MAHC.1985.10001
https://doi.org/10.1145/800055.802052
https://standards.scheme.org/official/r2rs.pdf
https://standards.scheme.org/official/r4rs.pdf
https://martinescardo.github.io/TypeTopology/DomainTheory.index.html
https://martinescardo.github.io/TypeTopology/DomainTheory.index.html
https://inria.hal.science/hal-04716568/
https://standards.scheme.org/official/r1rs.pdf
https://standards.scheme.org/official/r5rs.pdf
https://standards.scheme.org/official/r5rs.pdf
https://doi.org/10.1017/S0956796807006478

Checking a Denotational Semantics of Scheme in Agda

(12]

(16]

(17]

(18]

(19]

[20]

[21]
[22]

(23]

[24]

[25]
[26]

[27]

Peter D. Mosses. 1974. The semantics of semantic equations. In Math-
ematical Foundations of Computer Science, 3rd Symposium at Jadwisin
near Warsaw, Poland, June 17-22, 1974, Proceedings (Lecture Notes in
Computer Science, Vol. 28), Andrzej Blikle (Ed.). Springer, Berlin, Hei-
delberg, 409-422. doi:10.1007/3-540-07162-8_701

Peter D. Mosses. 1975. Mathematical Semantics and Compiler Genera-
tion. DPhil dissertation. University of Oxford.

Peter D. Mosses. 2024. SIS. Retrieved August 25, 2025 from https:
//pdmosses.github.io/software/sis/

Peter D. Mosses. 2024. Towards Verification of a Denotational Seman-
tics of Inheritance. In Proceedings of the Workshop Dedicated to Jens
Palsberg on the Occasion of His 60th Birthday (Pasadena, CA, USA)
(JENSFEST °24). ACM, New York, NY, USA, 5-13. doi:10.1145/3694843.
3694852

Peter D. Mosses. 2025. A compositional semantics for eval in Scheme.
In Proceedings of the Workshop Dedicated to Olivier Danvy on the Oc-
casion of His 64th Birthday (OLIVIERFEST °25), October 12—18, 2025,
Singapore, Singapore (Singapore, Singapore). ACM, New York, NY,
USA, 10 pages. doi:10.1145/3759427.3760369

Peter D. Mosses. 2025. Lightweight Agda formalization of denotational
semantics. In Proceedings of the 31st International Conference on Types
for Proofs and Programs (TYPES 2025), Fredrik Nordvall Forsberg (Ed.).
University of Strathclyde, Glasgow, Scotland, 286-290. https://msp.
cis.strath.ac.uk/types2025/TYPES2025-book-of-abstracts.pdf

Peter D. Mosses. 2025. Lightweight Agda formalization of denotational
semantics in article ‘A compositional semantics for eval in Scheme’.
ACM. doi:10.1145/3747409

Peter D. Mosses. 2025. Shallow Agda embedding of denotational
semantics in article ‘Checking a denotational semantics of Scheme in
Agda’. ACM. doi:10.1145/3747410

Steven S. Muchnick and Uwe F. Pleban. 1980. A semantic comparison
of LISP and SCHEME. In Proceedings of the 1980 ACM Conference on
LISP and Functional Programming (Stanford University, California,
USA) (LFP ’80). Association for Computing Machinery, New York, NY,
USA, 56—64. doi:10.1145/800087.802790

Uwe F. Pleban. 1981. Preexecution Analysis Based on Denotational
Semantics. Ph. D. Dissertation. University of Kansas.

Christian Queinnec. 1996. Lisp in Small Pieces. Cambridge University
Press, Cambridge, UK. doi:10.1017/CB0O9781139172974

Christian Queinnec. 2003. L2T: Literate Programming Utility. LIP6,
Université Pierre et Marie Curie. Retrieved August 25, 2025 from
https://christian.queinnec.org/WWW/[2t.html

Jonathan Rees and William Clinger. 1986. Revised® Report on the Al-
gorithmic Language Scheme. ACM SIGPLAN Notices 21, 12 (December
1986), 37-79. https://standards.scheme.org/official/r3rs.pdf
Bernhard Reus. 1999. Formalizing Synthetic Domain Theory. Journal of
Automated Reasoning 23 (1999), 411-444. doi:10.1023/A:1006258506401
John C. Reynolds. 1998. Theories of Programming Languages. Cam-
bridge Univ. Press, Cambridge, UK. doi:10.1017/CB0O9780511626364
Scheme Working Group, Microprocessor and Microcomputer Stan-
dards Subcommittee. 1991. IEEE Standard 1178-1990 for the Scheme
Programming Language. Technical Report IEEE1178. IEEE, New York,
NY, USA.

15

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Scheme °25, October 12-18, 2025, Singapore, Singapore

Scheme.org [n.d.]. Scheme Standards. Retrieved August 25, 2025 from
https://standards.scheme.org

Dana Scott and Christopher Strachey. 1971. Toward a mathematical
semantics for computer languages. In Proc. Symp. on Computers and Au-
tomata (Microwave Research Inst. Symposia Series, Vol. 21). Polytechnic
Inst. of Brooklyn, New York, NY, USA, 19-46. Also: Tech. Monograph
PRG-6, Oxford Univ. Computing Lab., Programming Research Group
(1971). URL https://www.cs.ox.ac.uk/files/3228/PRG06.pdf.

Dana S. Scott. 1980. Relating Theories of the Lambda-calculus: Dedi-
cated to Professor H. B. Curry on the Occasion of His 80th Birthday.

In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism,]. P. Seldin and J. R. Hindley (Eds.). Academic Press, London,

UK, 403-450. https://prl.khoury.northeastern.edu/blog/static/scott-
80-relating-theories.pdf

Alex Shinn, John Cowan, and Arthur A. Gleckler. 2021. Revised” Report
on the Algorithmic Language Scheme: Small Edition. R7RS Working
Group 1. Retrieved August 25, 2025 from https://standards.scheme.
org/official/r7rs.pdf

Alex Simpson. 2004. Computational Adequacy for Recursive Types in
Models of Intuitionistic Set Theory. Annals of Pure and Applied Logic
130, 1 (2004), 207-275. doi:10.1016/j.apal.2003.12.005 Papers presented
at the 2002 IEEE Symposium on Logic in Computer Science (LICS).
Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van
Straaten. 2007. Revised’ Report on the Algorithmic Language Scheme:
Rationale. R7RS Working Group 1. Retrieved August 25, 2025 from
https://standards.scheme.org/official/rérs-rationale.pdf

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,
Robby Findler, and Jacob Matthews. 2010. Revised® Report on the Al-
gorithmic Language Scheme. Cambridge University Press, Cambridge,
UK. https://standards.scheme.org/official/rérs.pdf

Joseph E. Stoy. 1977. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Semantics. MIT Press, Cambridge,
MA, USA.

Anton van Straaten. 2002. An Executable Denotational Se-
mantics for Scheme. AppSolutions. Retrieved August 25,
2025 from https://web.archive.org/web/20130531130945/http://www.
appsolutions.com/SchemeDS/ds.html

Christopher Strachey. 1966. Towards a formal semantics. In Formal
Language Description Languages for Computer Programming, Proc. IFIP
Working Conference, 1964. North-Holland, Amsterdam, Netherlands,
198-220.

Gerald Jay Sussman and Guy Lewis Steele Jr. 1975. Scheme: An inter-
preter for extended lambda calculus. Technical Report MIT Artificial
Intelligence Memo 349. MIT. https://standards.scheme.org/official/
rOrs.pdf

Robert D. Tennent. 1976. The denotational semantics of programming
languages. Commun. ACM 19, 8 (Aug. 1976), 437-453. doi:10.1145/
360303.360308

The Agda Team. 2025. Agda Language Reference. Retrieved August 25,
2025 from https://agda.readthedocs.io/en/v2.8.0/language/
Wikipedia. 2025. Agda. Retrieved August 25, 2025 from https://en.
wikipedia.org/wiki/Agda_(programming_language)

Received 2025-07-25; accepted 2025-08-14

https://doi.org/10.1007/3-540-07162-8_701
https://pdmosses.github.io/software/sis/
https://pdmosses.github.io/software/sis/
https://doi.org/10.1145/3694848.3694852
https://doi.org/10.1145/3694848.3694852
https://doi.org/10.1145/3759427.3760369
https://msp.cis.strath.ac.uk/types2025/TYPES2025-book-of-abstracts.pdf
https://msp.cis.strath.ac.uk/types2025/TYPES2025-book-of-abstracts.pdf
https://doi.org/10.1145/3747409
https://doi.org/10.1145/3747410
https://doi.org/10.1145/800087.802790
https://doi.org/10.1017/CBO9781139172974
https://christian.queinnec.org/WWW/l2t.html
https://standards.scheme.org/official/r3rs.pdf
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1017/CBO9780511626364
https://standards.scheme.org
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf
https://prl.khoury.northeastern.edu/blog/static/scott-80-relating-theories.pdf
https://prl.khoury.northeastern.edu/blog/static/scott-80-relating-theories.pdf
https://standards.scheme.org/official/r7rs.pdf
https://standards.scheme.org/official/r7rs.pdf
https://doi.org/10.1016/j.apal.2003.12.005
https://standards.scheme.org/official/r6rs-rationale.pdf
https://standards.scheme.org/official/r6rs.pdf
https://web.archive.org/web/20130531130945/http://www.appsolutions.com/SchemeDS/ds.html
https://web.archive.org/web/20130531130945/http://www.appsolutions.com/SchemeDS/ds.html
https://standards.scheme.org/official/r0rs.pdf
https://standards.scheme.org/official/r0rs.pdf
https://doi.org/10.1145/360303.360308
https://doi.org/10.1145/360303.360308
https://agda.readthedocs.io/en/v2.8.0/language/
https://en.wikipedia.org/wiki/Agda_(programming_language)
https://en.wikipedia.org/wiki/Agda_(programming_language)

	Abstract
	1 Introduction
	1.1 The Scheme Reports
	1.2 Checking the Formal Semantics of Scheme
	1.3 Wellformedness of Denotational Definitions

	2 Denotational Semantics of Core Scheme
	2.1 Origin
	2.2 Concepts and Notation
	2.3 Contents and Structure

	3 Embedding in Agda
	3.1 Notation
	3.2 Abstract Syntax
	3.3 Domain Equations
	3.4 Semantic Functions
	3.5 Auxiliary Functions

	4 Wellformedness Issues
	4.1 Non-compositionality
	4.2 Type Errors
	4.3 Overloaded Names

	5 Suggestions
	5.1 Domain Equations
	5.2 Semantic Functions
	5.3 Auxiliary Functions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

