
Checking a Denotational Semantics of Scheme in Agda
Peter D. Mosses

Delft University of Technology

Delft, Netherlands

Swansea University

Swansea, United Kingdom

p.d.mosses@tudelft.nl

Abstract
The authoritative standards for the algorithmic language

Scheme are the Scheme reports. Most of the revised reports

include a denotational semantics for primitive Scheme ex-

pressions and selected procedures.

This paper first traces the history of the semantic defini-

tion, and summarizes its form and content. It then presents a

shallow embedding of denotational semantics into the func-

tional programming language Agda. The embedding is il-

lustrated by showing how fragments of the denotational

semantics given in the fifth revised Scheme report (R
5
RS)

are embedded into Agda.

Type-checking the Agda embedding of a semantics indi-

rectly tests its wellformedness. Agda reported several issues

with the embedding of the complete denotational semantics

from R
5
RS. The paper suggests changes to the semantics that

would address the reported issues, as well as further changes

that could improve the conciseness and perspicuity of the

definitions.

This paper is dedicated to the memory of
Christopher Strachey (1916–1975)

CCS Concepts: • Theory of computation → Denota-
tional semantics; Type theory; • Software and its engi-
neering→ Semantics; Functional languages.

Keywords: Denotational semantics, Scheme, wellformed-

ness, Agda, shallow embedding

ACM Reference Format:
Peter D. Mosses. 2025. Checking a Denotational Semantics of Scheme

in Agda. In Proceedings of the 26th ACM SIGPLAN International
Workshop on Scheme and Functional Programming (Scheme ’25), Oc-
tober 12–18, 2025, Singapore, Singapore. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3759537.3762694

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

Scheme ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2162-5/25/10

https://doi.org/10.1145/3759537.3762694

1 Introduction
The initial report on Scheme language was published in

December 1975. Congratulations to the Scheme developers

and users on the 50th anniversary!

1.1 The Scheme Reports
Quoting from the Scheme Standards web page [28]:

The Scheme programming language was intro-

duced in the 1975 paper, Scheme: An Interpreter
for Extended Lambda Calculus. Since then it has

been improved and extended through many

rounds of standardization. The authoritative

standards are the Scheme reports. Their names

follow the convention Revised𝑛 Report on the
Algorithmic Language Scheme, abbreviated R

𝑛
RS.

In the abstract of the initial report, Sussman and Steele

indicate how significantly Scheme extends the lambda calcu-

lus [38]:

Inspired by ACTORS [. . .], we have implemented

an interpreter for a LISP-like language, SCHEME,

based on the lambda calculus [. . .], but extended

for side effects, multiprocessing, and process syn-

chronization.

The reference manual in the first section is remarkably con-

cise: just five pages! The programming examples in the sec-

ond section raise issues of semantics, which the authors seek

to clarify with reference to the lambda calculus and the fixed

point operator in the third section.

The first Revised Report on Scheme (1978, [9]) has the

subtitle “a dialect of LISP”, and gives a complete “user man-

ual” for the language (22 pages) accompanied by explanatory

notes (10 pages). The second, R
2
RS (1985, [5]) is about double

the length, and promises that “formal definitions of the syn-

tax and semantics of Scheme will be included in a separate

report”. Those definitions were provided in R
3
RS (1986, [24]),

which defines the lexical and context-free syntax of the com-

plete language in an extended BNF, and “provides a for-

mal denotational semantics for the primitive expressions of

Scheme and selected built-in procedures”. The denotational

semantics was repeated with only minor changes in R
4
RS

(1991, [6]), the IEEE Standard (1991, [27]), R
5
RS (1998, [10]),

and R
7
RS (2013, [31]).

3

https://orcid.org/0000-0002-5826-7520
https://en.wikipedia.org/wiki/Christopher_Strachey
https://doi.org/10.1145/3759537.3762694
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759537.3762694
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Scheme ’25, October 12–18, 2025, Singapore, Singapore Peter D. Mosses

R
6
RS (2007, [34]) provides an operational semantics in-

stead of the denotational semantics, and covers much more

of the language. It is based on a paper by Matthews and

Findler [11] where they state that “denotational semantics

has fallen out of favor among programming language re-

searchers”, and “requires much more mathematical sophisti-

cation than operational semantics, making it less appropriate

for a standard intended for use by working programmers”.

However, lambda-abstractions have now become quite

familiar to programmers in various mainstream languages;

similarly for recursive type definitions, and defining func-

tions by pattern-matching. And definitions of domains and

semantic functions can easily be understood without know-

ing anything at all about their mathematical foundations

(including the structure of domains and the notion of conti-

nuity). When formulating a denotational semantics, it can

simply be assumed that domain equations always have well-

defined solutions, and that when functions on a domain are

defined in lambda-notation they always have (least) fixed

points (as in so-called synthetic domain theory [25, 30, 32],

which is based on constructive logic). See also Queinnec’s

motivation for denotational semantics [22, §5].

The R
6
RS Rationale stresses the need for the formal se-

mantics to specify precisely that the order of expression

evaluation in procedure calls is implementation dependent

[33, §12]:

The denotational semantics in R
5
RS has several

problems, most seriously its incomplete treat-

ment of the unspecific evaluation order of ap-

plications: the denotational semantics suggests

that a single unspecified order is used. Modelling

nondeterminism is generally difficult with deno-

tational semantics, and an operational semantics

allows specifying the unspecified evaluation or-

der precisely.

Despite that issue, R
7
RS reverted to giving a denotational

semantics of core Scheme constructs, without changing the

treatment of unspecified evaluation order from R
5
RS.

1.2 Checking the Formal Semantics of Scheme
The operational semantics given in R

6
RS is executable. As

stated there in the introduction to the semantics [34, App. A]:

To help understand the semantics and how it

behaves, we have implemented it in PLT Redex.

The implementation is available at the report’s

website.
1

All of the reduction rules and the meta-

functions shown in the figures in this semantics

were generated automatically from the source

code.

1https://www.r6rs.org/

In fact the denotational semantics given in R
3
RS was pro-

duced in much the same way. As stated in the introduction

to the semantics [24, §7.2]:

The semantics in this section was translated by

machine from an executable version of the se-

mantics written in Scheme itself.

Presumably its authors checked that the executable ver-

sion computed the expected results for a sufficiently di-

verse suite of test programs. Van Straaten later implemented

the semantics from R
5
RS in Scheme [36], and checked its

consistency with the original definition by translating the

Scheme code back to denotational syntax using Queinnec’s

L2T tool [23]. However, reformulating a denotational seman-

tics in a dynamically-typed language such as Scheme does

not check that the semantic definition is actually wellformed.

1.3 Wellformedness of Denotational Definitions
A difficulty with checking the wellformedness of denota-

tional definitions is the current lack of a precise description

of the meta-notation used in the literature. In the 1970s,

the author proposed a meta-notation MSL for denotational

semantics [12]. MSL has an unambiguous grammar and a

formal (meta-circular) definition of its semantics; it was a

precursor of the meta-notation DSL of SIS (Semantics Im-

plementation System) [14], which was used in courses on

denotational semantics in several universities, although the

implementation of SIS was too inefficient for execution of the

denotational semantics of larger languages [2]. A DSL defi-

nition of a mini-language [8] was included in the successful

bid for the contract to develop the Ada language. However,

a more conventional mathematical meta-notation for deno-

tational semantics is generally preferred in the scientific

literature, including the Scheme reports.

Outline. This paper makes the following contributions:

• Section 2 traces the origin of the denotational seman-

tics in R
3
RS, and summarizes its structure and content.

• Section 3 presents a shallow embedding of denota-

tional semantics into Agda, illustrated with fragments

from R
5
RS. Familiarity with the Agda language [41]

would be helpful for this section.

• Section 4 discusses several issues with the wellformed-

ness of the denotational semantics in R
5
RS that were

reported by Agda when checking its embedding, as

well as some further issues noticed by the author.

• Section 5 suggests changes to improve the wellformed-

ness, conciseness, and perspicuity of the denotational

semantics given in the Scheme reports.

• Section 6 explains the relationship between the shal-

low Agda embedding of denotational semantics pre-

sented in Section 3 and previous work on defining

denotational semantics in Agda.

Section 7 concludes, and mentions potential future work.

4

https://www.r6rs.org/

Checking a Denotational Semantics of Scheme in Agda Scheme ’25, October 12–18, 2025, Singapore, Singapore

2 Denotational Semantics of Core Scheme
R

3
RS (1986) defines the lexical and context-free syntax of

the complete Scheme language in an extended BNF, and

“provides a formal denotational semantics for the primitive

expressions of Scheme and selected built-in procedures”. The

definitions given in R
4
RS, the IEEE Standard, R

5
RS, and R

7
RS

are based directly on the R
3
RS version.

Section 2.1 describes the origin of the denotational seman-

tics given in R
3
RS. Section 2.2 summarizes the concepts and

notation. Section 2.3 gives and overview of the contents and

structure of the definition.

2.1 Origin
Remarks by Sussman and Steele in their original presentation

of Scheme in 1975 already foreshadowed the development

of a denotational semantics for Scheme:

Can we make these ideas more precise? One tra-

ditional approach is to model the computation

with lambda calculus. [. . .] The “usual” lambda

calculus construct for defining recursive func-

tions is a rather obscure object called the “fixed

point” operator.

In the first Revised Report, they also considered the impact

of evaluation order in lambda calculus:

{Normal Order Loses}

Our definition of block exploits the fact that

SCHEME is an applicative-order (call-by-value)

language in order to enforce sequencing. Suss-

man has proved that one cannot do a similar

thing in a normal-order (call-by-name) language:

Theorem: Normal order, as such, is incapable of

enforcing sequencing (whereas applicative order

is) in the form of the block construct.

(Informal) proof: [. . .]

Most of the details of the denotational semantics of prim-

itive expressions and selected procedures in the Scheme

reports originate in the work of Muchnick and Pleban [20].

(The treatment of environments in Pleban’s dissertation [21]

is somewhat different.) In personal correspondence, Clinger

recalled the development of the formal semantics in R
3
RS:

Jonathan Rees wrote the executable version. [It]

was based upon a draft of the denotational se-

mantics I had written, which was itself based

upon the Muchnick and Pleban semantics. That

semantics appears within my paper with the title

“The scheme 311 compiler an exercise in deno-

tational semantics”, which was published in the

proceedings of the 1984 Lisp Conference and is

cited by the R
3
RS.

[. . .] Jonathan Rees then wrote a small Scheme

program that translated his Scheme code into

the LaTeX that went into print.

Regarding the remark cited in Section 1.2, Clinger added:

[. . .] the purpose of that remark in R
3
RS §7.2

was to emphasize that the denotational seman-

tics had been tested by creating an executable

version of it, and that errors in the printed ver-

sion should be unlikely because the typesetting

had been done by machine translation from the

executable semantics.

A note in the current LATEX sources for R
7
RS explains that

for subsequent Scheme reports, the semantics was modified

without going back to the executable version, so the remark

was removed.

§7.2 of R
4
RS differs from the same section of R

3
RS mainly

by distinguishing between mutable and immutable objects.

Clinger spotted one other difference:

In the R
3
RS semantics, the empty list (which

the semantics refers to as null) counts as false,

mainly because Texas Instruments insisted upon

that for compatibility with Common Lisp. In the

R
4
RS semantics, the empty list does not count as

false. This difference shows up in the definition

of the auxiliary function truish.

The denotational semantics included as an annex in the

IEEE standard for Scheme [27] appears to be based on the

definitions in R
4
RS, but suffers from significant formatting

issues. The version in R
5
RS differs from R

4
RS by adding the

semantics of the procedures values and call-with-values.

R
7
RS added a domain P of dynamic points, and changed the

denotations of expressions to be functions of P, to support

the definition of the semantics of the dynamic-wind pro-

cedure; this required minor adjustments to most semantic

equations and auxiliary function definitions.

2.2 Concepts and Notation
The standards refer to Stoy’s 1977 textbook on denotational

semantics [35] for a description of concepts and notation

used in the definitions. They provide the following concise

summary of the notation used for sequences, McCarthy con-

ditional, environment construction, and injections and pro-

jections between sums of domains and their summands.

⟨ . . . ⟩ sequence formation

𝑠 ↓ 𝑘 𝑘th member of the sequence 𝑠 (1-based)

#𝑠 length of sequence 𝑠

𝑠 § 𝑡 concatenation of sequences 𝑠 and 𝑡

𝑠 † 𝑘 drop the first 𝑘 members of sequence 𝑠

𝑡 → 𝑎,𝑏 McCarthy conditional “if 𝑡 then 𝑎 else 𝑏”

𝜌 [𝑥/𝑖] substitution “𝜌 with 𝑥 for 𝑖”

𝑥 in D injection of 𝑥 into domain D
𝑥 | D projection of 𝑥 to domain D

Tennent’s 1976 article in Comm. ACM [39] is an alter-

native reference for the concepts and notation used in the

denotational semantics of Scheme.

5

Scheme ’25, October 12–18, 2025, Singapore, Singapore Peter D. Mosses

2.3 Contents and Structure
The formal semantics in the Scheme standards defines the ab-

stract syntax and denotations of identifiers, procedure calls,

lambda-expressions, if-expressions, and assignment expres-

sions; literals are omitted because “an accurate definition

[. . .] would complicate the semantics without being very

interesting”.

It does not give an abstract syntax for programs and def-

initions, but explains that the meaning of a program P “in

which all variables are defined before being referenced or

assigned” is the denotation of an expression formed from

I*, P
′

and ⟨undefined⟩ “where I* is the sequence of variables

defined in P, P
′

is the sequence of expressions obtained by re-

placing every definition in P by an assignment, ⟨undefined⟩
is an expression that evaluates to undefined ”.

The formal semantics also defines auxiliary functions cor-

responding to the code of selected built-in procedures.

Abstract syntax. The formal semantics starts with a con-

cise context-free grammar defining the abstract syntax of

the core expressions; commands are defined to be the same

as expressions.

Domain equations. The abstract syntax is followed by

domain equations that define named domains recursively

in terms of (continuous) function domains, (cartesian) prod-

uct domains, (separated) sum domains, (finite) sequence do-

mains, and flat domains. Some domains are declared but left

undefined: locations, natural numbers, symbols, characters,

numbers, answers, and errors.

Semantic functions. The definition of the semantic func-

tions starts by declaring the domains of denotations for con-

stants, expressions, expression sequences, and command

sequences. The denotations of constants are omitted; the

denotations of the other sorts of constructs are defined by

semantic equations, mostly in continuation-passing style.

Auxiliary functions. The formal semantics concludes

with the definitions of auxiliary functions. Some of these

functions are used in the semantic equations; the rest of

them correspond to built-in procedures. Several functions

are considered implementation-dependent, and therefore not

defined: the continuation wrong for error reports, the storage

allocator new, and the arbitrary permutations permute and

its inverse unpermute.

3 Embedding in Agda
This section presents a shallow embedding of denotational

semantics into Agda. The embedding is illustrated by show-

ing fragments of the denotational semantics in R
5
RS and

the corresponding Agda code. A listing of the embedding of

the complete denotational semantics in R
5
RS is available as

supplemental material [19].

Readers are assumed to be familiar with the main con-

cepts of denotational semantics, and with the meta-notation

summarized in Section 2.2. Familiarity with the Agda lan-

guage [40, 41] would also be helpful.

In denotational semantics, the type of a named function is

usually declared before giving the definition of the function,

and function definitions are implicitly recursive, but func-

tions can be used before they have been declared; similarly

for domain equations. R
5
RS exploits this flexibility to present

the definitions of the semantic functions before those of the

auxiliary functions used in them.

A denotational definition is usually divided into the same

four sections as in R
5
RS. Its embedding into Agda naturally

defines each section as a separate module, specifying which

other modules it imports.

3.1 Notation
An additional module declares an Agda version of the conven-

tional notation for domain constructors and their associated

functions, including the operators summarized in Section 2.2.

For brevity, the declarations and definitions presented below

omit notation whose use is not illustrated in this paper; they

have also been reformulated to ease their presentation.

Domain = Set
variable D E : Domain

Set is the fundamental universe in Agda. Its elements

are types, including function types and empty types. For

a shallow embedding of denotational semantics in Agda

such that functions on domains can be defined in 𝜆-notation,

domains also need to be types.

Domains are always non-empty, and in principle, the uni-

verse Domain of domains should be a new universe, disjoint

from Set. However, Agda does not support declaration of

new universes: adding one would involve extending Agda.

So here, Domain is defined to be equal to Set, and the

variables D and E range over arbitrary types. The main dis-

advantage is that applications of domain constructors to

ordinary types in Set are not reported as errors by the type-

checker.

postulate ⊥ : D
postulate fix : (D → D) → D

In Agda, a postulate simply declares a name to have a

specified type, without defining its value. The postulate that

all domains D have a distinguished element named ⊥ ensures

that all domains are non-empty – but the lack of distinction

between domains and ordinary types implies also that empty

types are non-empty, so the postulate is obviously unsound.

The postulated function type for fix is also unsound: when

D is an empty type, fix must map the empty function on D
to some element of D.

As stated in the Agda language reference [40], introduc-

ing postulates is in general not recommended: a preferable

6

Checking a Denotational Semantics of Scheme in Agda Scheme ’25, October 12–18, 2025, Singapore, Singapore

way to work with assumptions is to declare them as module

parameters. When using Agda as a proof checker, uninstanti-

ated module parameters become explicit premises of proved

propositions; in contrast, dependence of proved propositions

on postulates is implicit, which can be misleading.

Here, however, Agda is primarily used as a type checker,

and declaring unsound assumptions as postulates does not

undermine the soundness of type correctness. Moreover,

using module parameters instead of postulates would have

significant disadvantages: module parameters cannot be used

in rewrite rules; it is tedious to supply a large number of

parameters when importing a module (as illustrated by the

Agda code accompanying [15]); and module parameters may

cause major performance problems in specific cases.

So in the shallow embedding of denotational semantics

into Agda, all assumptions are formulated as postulates.

postulate _ +⊥ : Set → Domain
postulate 𝜂 : (S : Set) → S +⊥
data Bool : Set where true false : Bool
Bool⊥ = Bool +⊥
data Nat : Set where zero : Nat; suc : Nat → Nat
Nat⊥ = Nat +⊥
postulate _ ==⊥ _ : Nat⊥→ Nat → Bool⊥
postulate _−→ _ , _ : Bool⊥→ D → D → D

Underscores in function names indicate argument posi-

tions. The domain S +⊥ consists of elements 𝜂 s for s : S and

the element ⊥. The ternary McCarthy conditional operator

b −→ d , d′
uses a longer arrow than function types.

postulate _ + _ : Domain → Domain → Domain
postulate _ × _ : Domain → Domain → Domain
postulate _ , _ : D → E → D × E
postulate _ ↓21 : D × E → D
postulate _ ↓22 : D × E → E
_ ^ _ : Domain → Nat → Domain

The notation D + E for sum domains and D × E for product

domains is as usual. For any n : Nat, D ^ n consists of n-tuples

d1 , . . . , dn of elements of D.

variable n : Nat
postulate _ ∗ : Domain → Domain
postulate 〈〉 : D ∗

postulate 〈 _ 〉 : (D ^ suc n) → D ∗

postulate # : D ∗ → Nat⊥
postulate _ § _ : D ∗ → D ∗ → D ∗

postulate _ ↓ _ : D ∗ → Nat → D
postulate _ † _ : D ∗ → Nat → D ∗

The above notation for functions on domains D ∗
of (finite,

possibly-empty) sequences is as in the Scheme reports. Note

that angle brackets 〈 _ 〉 form sequences from tuples; ordinary

parentheses are used to group tuples, when needed.

3.2 Abstract Syntax
The definition of abstract syntax in R

5
RS is as follows:

K ∈ Con constants, including quotations

I ∈ Ide identifiers (variables)

E ∈ Exp expressions

Γ ∈ Com = Exp commands

Exp −→ K | I | (E0 E*)
| (lambda (I*) Γ* E0)
| (lambda (I* . I) Γ* E0)
| (lambda I Γ* E0)
| (if E0 E1 E2) | (if E0 E1)
| (set! I E)

Abstract syntax definitions in Agda are less concise: sorts

of terms are defined as inductive datatypes, and variables are

declared separately from the types over which they range:

postulate Con : Set -- constants

variable K : Con
postulate Ide : Set -- identifiers

variable I : Ide
data Exp : Set -- expressions

variable E : Exp
Com = Exp -- commands

variable Γ : Com
data Ide∗ : Set -- identifier sequences

variable I∗ : Ide∗

data Exp∗ : Set -- expression sequences

variable E∗ : Exp∗

data Com∗ : Set -- command sequences

variable Γ
∗ : Com∗

Note that Ide∗ (with no space after Ide) is a simple type

name, not an application of the sequence domain constructor.

The names of the constructors of the datatype use under-

scores to indicate argument positions, but adjacent under-

scores need to be separated by other characters, and ordinary

parentheses are not allowed in names. Most of the construc-

tor names used in the embedding of R
5
RS are formed from

banana-brackets and the Unicode character ‘␣’ that represents

a space. The types of the constructors have to be curried.

data Exp where
con : Con → Exp
ide : Ide → Exp
L _ ␣ _ M : Exp → Exp∗ → Exp
L lambda␣L _ M _ ␣ _ M : Ide∗ → Com∗ → Exp → Exp
L lambda␣L _ · _ M _ ␣ _ M : Ide∗→ Ide→Com∗→ Exp→ Exp
L lambda _ ␣ _ ␣ _ M : Ide → Com∗ → Exp → Exp
L if _ ␣ _ ␣ _ M : Exp → Exp → Exp → Exp
L if _ ␣ _ M : Exp → Exp → Exp
L set! _ ␣ _ M : Ide → Exp → Exp

7

Scheme ’25, October 12–18, 2025, Singapore, Singapore Peter D. Mosses

Syntactic sequence sorts are defined as datatypes in the same

way, e.g.:

data Exp∗ where
␣ : Exp∗

_ ␣␣ _ : Exp → Exp∗ → Exp∗

3.3 Domain Equations
The only required properties of domains for defining a de-

notational semantics are that domains can be defined recur-

sively (up to isomorphism), and that functions on domains

have well-defined fixed-points. For the shallow embedding of

denotational definitions into Agda, the usual mathematical

structure of domains as cpos, and the restriction of function

spaces to continuous functions, are simply ignored. Thus

domains are embedded as ordinary Agda types; functions

on these types are always defined in lambda-notation, and

assumed to have well-defined fixed-points.

In Agda, however, the type-checker does not terminate

when type constants are recursively defined. The embed-

ding of recursively defined domains into Agda avoids non-

termination by leaving one or more types undefined, then

postulating functions between these types and their intended

structure.

R
5
RS specifies the following domain equations.

𝛼 ∈ L locations

𝜈 ∈ N natural numbers

T = {false, true} booleans

Q symbols

H characters

R numbers

Ep = L × L × T pairs

Ev = L* × T vectors

Es = L* × T strings

M = {false, true, null, undefined, unspecified}
miscellaneous

𝜙 ∈ F = L × (E* → K → C) procedure values

𝜖 ∈ E = Q + H + R + Ep + Ev + Es + M + F
expressed values

𝜎 ∈ S = L → (E × T) stores

𝜌 ∈ U = Ide → L environments

𝜃 ∈ C = S → A command conts

𝜅 ∈ K = E* → C expression conts

A answers

X errors

As with abstract syntax, the Agda embedding of domain

equations is less concise. The following excerpts illustrate

various possibilities:

postulate L : Domain
variable 𝛼 : L
N : Domain
variable 𝜈 : N

T : Domain
Ep : Domain
M : Domain
F : Domain
variable 𝜙 : F
postulate E : Domain
variable 𝜖 : E
S : Domain
variable 𝜎 : S
U : Domain
variable 𝜌 : U
C : Domain
variable 𝜃 : C
K : Domain
variable 𝜅 : K
postulate A : Domain
E∗ = E ∗

variable 𝜖∗ : E∗

The following Agda type definitions correspond directly

to recursive definitions of domains in R
5
RS.

data Misc : Set where
false true null undefined unspecified : Misc

N = Nat⊥
T = Bool⊥
Ep = L × L × T
M = Misc +⊥
F = L × (E∗ → K→ C)
-- E = ... + Ep + ... + M + F

S = L→ (E × T)
U = Ide → L
C = S→ A
K = E∗ → C

Note especially the following points:

• Unspecified domains such as L are simply postulated

in the embedding as elements of the type Domain.

• The embeddings of almost all other domains are types

defined directly using the standard notation for do-

main constructors (sums, products, functions) and flat

domains (truth values, natural numbers) presented in

Section 3.1.

• The flat domain M is defined by adding ⊥ to a Scheme-

specific datatype of values Misc.

• The domains F and E are mutually recursive. Their

embedding avoids recursive type definitions by postu-

lating E as an undefined Agda type, together with in-

jections and projections between E and its summands.

• The domain name E∗
abbreviates the application of

the domain constructor _ ∗
to E.

8

Checking a Denotational Semantics of Scheme in Agda Scheme ’25, October 12–18, 2025, Singapore, Singapore

The injections, tests, and projections for the Agda embed-

ding of the sum domain E need to be declared individually,

e.g.:

postulate
_Ep-in-E : Ep→ E
_ ∈-Ep : E → T
_ |-Ep : E → Ep

_ F-in-E : F → E
_ ∈-F : E → T
_ |-F : E → F

The Agda embedding of the domain equations in R
5
RS is

completed by postulating the operators used in the defini-

tions of semantic and auxiliary functions, e.g.:

postulate
_ ==L _ : L→ L→ T
_ ==M _ : M→M→ T

3.4 Semantic Functions
The Agda embedding of semantic function declarations and

definitions is quite direct. Agda notation for 𝜆-abstractions

differs from the conventional notation used in R
5
RS by using

an arrow ‘→’ instead of a dot between the bound variable(s)

and the body; Agda also requires names to be separated (by

layout or parentheses) from adjacent names and keywords.

R
5
RS declares the following semantic functions:

K : Con → E
E : Exp → U → K → C
E* : Exp* → U → K → C
C : Com* → U → C → C

Their Agda embedding incorporates the double-bracket nota-

tion J· · ·K in the names of the functions, using an underscore

as a placeholder for the syntactic argument:

postulate KJ _ K : Con → E
EJ _ K : Exp → U→ K→ C
E∗J _ K : Exp∗ → U→ (K→ C)∗

C∗J _ K : Com∗ → U→ C→ C

(The reason for the difference between the type of denota-

tions of expression sequences in R
5
RS and in the embedding

is explained in Section 5.2.)

The definition of K is deliberately omitted in R
5
RS. This

is indicated in the Agda embedding by declaring KJ _ K as a

postulate.

The semantic equation for constant expressions K is:

EJ K K = 𝜆𝜌𝜅 . send (KJ K K) 𝜅

In Agda, the only difference is the explicit construction of

expressions from constants by con:

EJ con K K = 𝜆 𝜌 𝜅 → send (KJ K K) 𝜅

The semantic equation for identifiers I in R
5
RS is:

EJ I K =
𝜆𝜌𝜅 . hold (lookup 𝜌 I)

(single(𝜆𝜖 . 𝜖 = undefined →
wrong “undefined variable”,

send 𝜖 𝜅))

Formally, the test 𝜖 = undefined used above involves an

implicit projection from E to the flat domain M, which has

to be made explicit in the Agda embedding, as well as the

injection 𝜂 from Misc to M:

EJ ide I K = 𝜆 𝜌 𝜅 →
hold (lookup 𝜌 I)

(single (𝜆 𝜖 → ((𝜖 |-M) ==M 𝜂 undefined) −→
wrong "undefined variable" ,

send 𝜖 𝜅))

The semantic equation for conditional expressions in R
5
RS

uses the auxiliary function truish : E → T, which is defined

as the strict map taking the false value in the summand M of

E to the value false in T, and all other non-⊥ arguments to

true in T.

EJ (if E0 E1 E2) K =
𝜆𝜌𝜅 . EJ E0 K 𝜌 (single (𝜆𝜖 . truish 𝜖 → EJ E1 K𝜌𝜅,

EJ E2 K𝜌𝜅))

In the embedding, no projections or injections need to be

added:

EJ L if E0 ␣ E1 ␣ E2 M K = 𝜆 𝜌 𝜅 →
EJ E0 K 𝜌 (single (𝜆 𝜖 → truish 𝜖 −→ EJ E1 K 𝜌 𝜅 ,

EJ E2 K 𝜌 𝜅))

Agda embeddings of the semantic equations for procedure

call and lambda-abstraction are illustrated in Section 5.

3.5 Auxiliary Functions
The following examples of auxiliary functions from R

5
RS

and their Agda embeddings illustrate most of the additional

notation required by the embedding.

R
5
RS includes:

send : E → K → C
send = 𝜆𝜖𝜅 . 𝜅⟨𝜖⟩

Its Agda embedding is direct

send : E→ K→ C
send = 𝜆 𝜖 𝜅 → 𝜅 〈 𝜖 〉

The function single is used to convert ordinary continua-

tions to continuations that take one-element sequences:

9

Scheme ’25, October 12–18, 2025, Singapore, Singapore Peter D. Mosses

single : (E → C) → K
single =
𝜆𝜓𝜖* . #𝜖* = 1 → 𝜓 (𝜖* ↓ 1),

wrong “wrong number of return values”

Its embedding uses the infix operator _ ↓ _ to select an ele-

ment of E from a sequence in E∗
:

single : (E→ C) → K
single =
𝜆 𝜓 𝜖∗ → (# 𝜖∗ ==⊥ 1) −→𝜓 (𝜖∗ ↓ 1) ,

wrong "wrong number of return values"

The following definition in R
5
RS involves also the store:

hold : L → K → C
hold = 𝜆𝛼𝜅𝜎 . send (𝜎𝛼 ↓ 1)𝜅𝜎

The term 𝜎𝛼 denotes a pair of a location and a truth-value.

In the Agda embedding, pairs and sequences are different

types, and the postfix operator _ ↓21 : E × T → E needs to

be used to select the first component of a pair:

hold : L→ K→ C
hold = 𝜆 𝛼 𝜅 𝜎 → send (𝜎 𝛼 ↓21) 𝜅 𝜎

The function takefirst is one of several that are defined

recursively in R
5
RS. Its type is not declared, but for well-

formedness it needs to be E∗ → N → E∗, where N is the flat

domain of natural numbers.

takefirst =
𝜆𝑙𝑛 . 𝑛 = 0 → ⟨ ⟩, ⟨𝑙 ↓ 1⟩ § (takefirst (𝑙 † 1) (𝑛 − 1))

The Agda embedding defines takefirst inductively in its sec-

ond argument. This is possible because that argument is the

length of a sequence of identifiers, which is of type Nat.

takefirst : E∗ → Nat → E∗

takefirst 𝜖∗ 0 = 〈〉
takefirst 𝜖∗ (suc n) = 〈 𝜖∗ ↓ 1 〉 § takefirst (𝜖∗ † 1) n

Agda requires recursive function definitions to be evi-

dently terminating. Functions that recurse on sequences 𝜖∗

in the postulated type E∗
cannot be defined by pattern-

matching on the structure of 𝜖∗, and their embedding re-

quires explicit use of the fixed-point operator fix. For exam-

ple, R
5
RS defines the auxiliary function list as:

list : E* → K → C
list =
𝜆𝜖*𝜅 . #𝜖* = 0 → send null 𝜅,

list (𝜖* † 1) (single(𝜆𝜖 . cons⟨𝜖* ↓ 1, 𝜖⟩𝜅))

Its Agda embedding is:

list : E∗ → K→ C
list = fix 𝜆 list′ →
𝜆 𝜖∗ 𝜅 → (# 𝜖∗ ==⊥ 0) −→ send (𝜂 null M-in-E) 𝜅 ,

list′ (𝜖∗ † 1)
(single (𝜆 𝜖 → cons 〈 (𝜖∗ ↓ 1) , 𝜖 〉 𝜅))

4 Wellformedness Issues
This section discusses various issues with the wellformed-

ness of the denotational semantics in R
5
RS, mostly revealed

by its embedding in Agda. The next section suggests changes

that would address the issues.

The Agda embedding described in the previous section

generally preserves the types of denotations. It also preserves

the lambda-notation in the definitions of auxiliary functions

and denotations, except that omitted injections and projec-

tions between E and its summands need to be inserted. The

main changes to the abstract syntax notation used in the

semantic equations concern the symbols in the names of

abstract syntax constructors.

Type-checking the Agda embedding of R
5
RS thus indi-

rectly tests the definitions in R
5
RS for wellformedness. The

closeness of the notation used in the Agda embedding (largely

due to exploiting the Agda support for Unicode) facilitates

pinpointing the origin in R
5
RS of reported issues.

However, the Agda type system has significant differences

from the mathematical underpinnings of denotational se-

mantics. For example, Agda does not accept recursive type

definitions, whereas domains can be recursively defined (up

to isomorphism) by domain equations in denotational seman-

tics. And Agda accepts recursive function definitions only

when it can prove that applications always terminate. On

the other hand, dependent types, implicit arguments, and in-

stance arguments make type-checking in Agda significantly

more general than in domain theory.

Thus type-checking an Agda embedding can result in

both false positives and false negatives. Nevertheless, it has

turned out to be sufficiently precise in practice for testing

the wellformedness of the formal semantics in R
5
RS.

4.1 Non-compositionality
A denotational semantics is supposed to be compositional,
where [26, §1.2]:

A semantics is said to be compositional when

the meaning of each phrase does not depend on

any property of its immediate subphrases except

the meanings of these subphrases.

As stated in the Agda language reference [40]:

Agda accepts only these recursive schemas that

it can mechanically prove terminating

The simplest case of this is primitive recursion, which corre-

sponds directly to compositionality when defining semantic

functions. However, Agda also accepts functions defined by

structural recursion, which allows recursive application to

arbitrarily deeper subphrases. So acceptance of a recursive

definition of the Agda embedding of a semantic function

does not check that it is actually compositional. On the other

hand, Agda’s rejection of a definition because it cannot prove

it terminating shows that it cannot be compositional.

10

Checking a Denotational Semantics of Scheme in Agda Scheme ’25, October 12–18, 2025, Singapore, Singapore

Agda rejects the embedding of the following two seman-

tic equations from R
5
RS due to potential non-termination,

which implies that they are non-compositional (as can any-

way be easily seen from the applications of E* and E to

arguments that are not simply variables):

EJ (E0 E*) K =
𝜆𝜌𝜅 . E*(permute(⟨E0⟩ § E*))

𝜌

(𝜆𝜖* . ((𝜆𝜖* . applicate (𝜖* ↓ 1) (𝜖* † 1) 𝜅)
(unpermute 𝜖*)))

EJ (lambda I Γ* E0) K = EJ (lambda (. I) Γ* E0) K

In both cases, it is straightforward to replace them by com-

positional equations, as suggested in Section 5.

4.2 Type Errors
Two significant type errors in R

5
RS are detected by Agda

when type-checking the embedding.

Ironically, one of them concerns the auxiliary function

wrong: its type is declared to be X → C, but it is applied to

strings, and X is left unspecified. Agda reported the error that

String is not a subtype of X when checking applications of

wrong.

The other type error is due to omission of an argument.

The very last auxiliary function definition in R
5
RS is:

cwv : E* → K → C [call-with-values]

cwv =
twoarg (𝜆𝜖1𝜖2𝜅 . applicate 𝜖1⟨ ⟩(𝜆𝜖* . applicate 𝜖2 𝜖*))

The type of applicate is E → E∗ → K → C, so the second

occurence of applicate above needs to be applied to a contin-

uation. (This error was already noticed by Van Straaten in

2002, in connection with implementing the R
5
RS semantics

in Scheme [36]. The same error occurs also in R
7
RS.)

As noted in Section 3, the types of the auxiliary functions

takefirst and dropfirst are not declared in R
5
RS. This was re-

ported as an error when type-checking the Agda embedding.

Two wellformedness errors that were not detected by type-

checking the Agda embedding concern the use of literal sets

as domains in domain equations:

T = {false, true}
M = {false, true, null, undefined, unspecified}

and in the type of an auxiliary function:

new : S → (L + {error})

But the lack of detection of such errors is unsurprising, since

domains are not distinguished from ordinary Agda types in

the embedding, as explained in Section 3.1.

4.3 Overloaded Names
In R

5
RS, the names false and true are overloaded as elements

of the domains T and M. The definition of truish uses false in

both domains:

truish : E → T
truish = 𝜆𝜖 . 𝜖 = false → false, true

The first occurrence of false can be seen to be in M, since

𝜖 ∈ E and M is a summand of E; and the second occurrence

is required to be in T by the type of truish. As Agda does

not support implicit injections, explicit injections have to be

added in the Agda embedding of R
5
RS.

However, the lack of injections or projections in the condi-

tion 𝜖 = false was reported as an error – because the equality

test is allowed only on flat domains, and 𝜖 ∈E = · · ·+F, which

is not a flat domain. It is necessary to check first whether 𝜖

is in the summand M, then test its projection to M for equality

to false. See Section 5 for the suggested definition, which is

embedded straightforwardly in Agda.

In R
5
RS the notation 𝑠 ↓ 𝑘 is used not only for selecting

the 𝑘th member of the sequence 𝑠 , but also for selecting com-

ponents of elements of product domains. Similarly, _[_/_] is

used as an operation both on environments 𝜌 and on stores 𝜎 .

Notational variants of these operators were introduced in

their Agda embedding to eliminate such type-inconsistent

overloading.

5 Suggestions
This section suggests changes for improving the wellformed-

ness, conciseness, and perspicuity of the denotational se-

mantics in the Scheme reports. Most of the suggestions are

independent of the 𝑛 in R
𝑛
RS; the fragments quoted below

were all copied from R
5
RS [10]. The suggestions are listed in

order of occurrence in §7.2.

5.1 Domain Equations
T = {false, true} booleans

M = {false, true, null, undefined, unspecified}
It is confusing to use the same names for values in different

domains. If T were to be a summand of E, false and true could

be removed from M.

X errors

As discussed in Section 4.2, the type of the auxiliary func-

tion wrong is X → C, but wrong is applied to strings, and X is

left undefined. This wellformedness issue could be addressed

by defining X to be a flat domain containing the literal strings

used as error messages. However, the Agda embedding of

applications of wrong to literal strings would then need ex-

plicit injections of strings into the flat domain; to avoid these

tedious injections, the embedding of the argument type of

wrong is an Agda datatype of strings, rather than a domain.

11

Scheme ’25, October 12–18, 2025, Singapore, Singapore Peter D. Mosses

5.2 Semantic Functions
See Section 4.1 for discussion of non-compositionality issues.

The following compositional semantics of procedure calls

permutes thunks instead of raw expressions:

EJ (E0 E*) K =
𝜆𝜌𝜅 . forces (permute(⟨EJ E0 K 𝜌⟩ § E*J E* K 𝜌))

(𝜆𝜖* . ((𝜆𝜖*
′ . applicate (𝜖*

′ ↓ 1) (𝜖*
′ † 1) 𝜅)

(unpermute 𝜖*)))

where

E* : Exp* → U → (K → C)*

E*J K = 𝜆𝜌 . ⟨ ⟩

E*J E0 E* K = 𝜆𝜌 . ⟨EJ E0 K 𝜌⟩ § E*J E* K 𝜌

permute : (K → C)* → (K → C)*
[implementation-dependent]

unpermute : E* → E* [inverse of permute]

forces : (K → C)* → K → C
forces =
𝜆𝜁 *𝜅 . #𝜁 * = 0 → 𝜅 ⟨ ⟩,

(𝜁 * ↓ 1)
(single(𝜆𝜖 . forces (𝜁 * † 1)

(𝜆𝜖* . 𝜅 (⟨𝜖⟩ § 𝜖*))))

The Agda embedding is:

EJ L E0 ␣ E∗ M K =
𝜆 𝜌 𝜅 →

forces (permute (〈 EJ E0 K 𝜌 〉 § E∗J E∗ K 𝜌))
(𝜆 𝜖∗ →

((𝜆 𝜖∗′ → applicate (𝜖∗′ ↓ 1) (𝜖∗′ † 1) 𝜅)
(unpermute 𝜖∗)))

E∗J _ K : Exp∗ → U→ (K→ C)∗

E∗J ␣ K = 𝜆 𝜌 → 〈〉
E∗J E ␣␣ E∗ K = 𝜆 𝜌 → 〈 EJ E K 𝜌 〉 § E∗J E∗ K 𝜌

postulate permute : (K→ C)∗ → (K→ C)∗

postulate unpermute : E∗ → E∗

forces : (K→ C)∗ → K→ C
forces = fix 𝜆 forces′ →
𝜆 𝜁 ∗ 𝜅 → (# 𝜁 ∗ ==⊥ 0) −→ 𝜅 〈〉 ,

(𝜁 ∗ ↓ 1)
(single (𝜆 𝜖 → forces′ (𝜁 ∗ † 1)

(𝜆 𝜖∗ → 𝜅 (〈 𝜖 〉 § 𝜖∗))))

Anglade, Lacrampe, and Queinnec [1] suggest denotations

of procedure calls that generate all possible permutations

of their subexpression denotations, and collect sequences of

the results obtained by composing them sequentially.

The right-hand side of the non-compositional semantic

equation for lambda-abstractions could simply be expanded

using EJ (lambda (I* . I) Γ* E0) K with I
∗

empty:

EJ (lambda I Γ* E0) K =
𝜆𝜌𝜅 . 𝜆𝜎 .

new 𝜎 ∈ L →
send (⟨new 𝜎 | L,

𝜆𝜖*𝜅′ . tievalsrest
(𝜆𝛼* . (𝜆𝜌 ′ . CJ Γ* K𝜌 ′ (EJ E0 K𝜌 ′𝜅′))

(extends 𝜌 ⟨I⟩ 𝛼*))
𝜖*

0⟩ in E)
𝜅

(update (new 𝜎 | L) unspecified 𝜎),
wrong “out of memory” 𝜎

5.3 Auxiliary Functions
The correction for the type error reported in the definition

of cwv, discussed in Section 4.2, appears to be as follows:

cwv : E* → K → C [call-with-values]

cwv =

twoarg (𝜆𝜖1𝜖2𝜅 . applicate 𝜖1⟨ ⟩(𝜆𝜖* . applicate 𝜖2 𝜖* 𝜅))

The following declarations should be added before the

corresponding definitions:

takefirst : E* → N → E*

dropfirst : E* → N → E*

The auxiliary function new : S → (L + {error}) is rather

awkward to use, because it requires explicit application to

the current store 𝜎 , which is usually left implicit in the

continuation-passing style adopted by the Scheme semantics.

Moreover, it is tedious to test new 𝜎 ∈ L, then use new 𝜎 | L
when true or continue with wrong “out of memory” 𝜎 when

false. And care is needed in subsequent applications of new
to refer to an updated store where the new location is marked

as in use.

A simple way to express storage allocation in continuation-

passing style is to define an auxiliary function alloc to al-

locate a new location and update it to an initial value, as

follows:

alloc : E → (L → C) → C
alloc =
𝜆𝜖𝜒𝜎 . new 𝜎 ∈ L →

𝜒 (new 𝜎 | L) (update (new 𝜎 | L) 𝜖 𝜎),
wrong “out of memory”𝜎

12

Checking a Denotational Semantics of Scheme in Agda Scheme ’25, October 12–18, 2025, Singapore, Singapore

The definition of the auxiliary function cons in R
5
RS is:

cons : E* → K → C
cons =

twoarg (𝜆𝜖1𝜖2𝜅𝜎 . new 𝜎 ∈ L →
(𝜆𝜎 ′ . new 𝜎 ′ ∈ L →
send (⟨new 𝜎 | L, new 𝜎 ′ | L, true⟩

in E)
𝜅

(update(new 𝜎 ′ | L)𝜖2𝜎
′),

wrong “out of memory”𝜎 ′)
(update(new 𝜎 | L)𝜖1𝜎),
wrong “out of memory”𝜎)

Using alloc would significantly simplify the definition:

cons =
twoarg (𝜆𝜖1𝜖2𝜅 . alloc 𝜖1 (𝜆𝛼1 .

alloc 𝜖2 (𝜆𝛼2 .

send (⟨𝛼1, 𝛼2, true⟩ in E) 𝜅)))

Similarly, using alloc unspecified would simplify the defini-

tions of the denotations of Scheme lambda-abstractions.

Tennent [39, §7.5] suggests defining all primitive store

functions to take continuations. Apart from notational con-

venience, this makes it possible for the store functions to

terminate program execution simply by discarding their con-

tinuation argument. In fact the functions hold and assign in

R
5
RS are already defined to take continuations; the declara-

tion of new could easily be adjusted to do the same.

6 Related Work
The Agda TypeTopology library is based on univalent foun-

dations. It includes modules for Scott domain theory, and

illustrates their use in denotational definitions of PCF and the

untyped 𝜆-calculus [7]. This Agda formalization of domain

theory corresponds directly to the usual set-theoretic defini-

tions: a domain consists of a carrier type together with a par-

tial order relation, its least element, and proofs of the required

completeness properties; a continuous function between do-

mains is an underlying function between their carrier types,

paired with a proof of its continuity. Currently, the formaliza-

tion requires definitions of denotations in 𝜆-notation to in-

clude explicit continuity proofs, and subsequently discard the

proof terms when applying functions. This prevents direct

embedding of 𝜆-notation from conventional denotational

definitions, and seems quite impractical for formalizing the

denotational semantics of larger languages (especially in the

continuation-passing style used in the Scheme reports).

The author previously developed a relatively lightweight

formalization of denotational semantics in Agda, and used it

to detect (minor) wellformedness issues in a semantics of in-

heritance in object-oriented systems [15]. Recursive domain

definitions were embedded as (unsatisfiable) assumptions

of isomorphisms between Agda types, circumventing the

issues with recursive definitions of Agda types.

A major drawback in [15] was the widespread insertion of

isomorphisms in function definitions. In the present paper,

almost all domain equations are embedded as Agda type def-

initions, and no isomorphisms between domains are needed.

However, when embedding the denotational semantics of the

untyped 𝜆-calculus in Agda [17], the domain D∞ is required

to be isomorphic to the domain D∞ → D∞, and there the

isomorphism needs to be explicit in the embedding.

The author has recently completed a shallow Agda em-

bedding of a denotational semantics for a simple form of

eval expressions, and presented it in a paper [16] in the

proceedings of OlivierFest ’25. The semantics is based on an

adaptation of a suggestion made by Clinger [4] more than

40 years ago. A language that includes eval is defined incre-

mentally, starting from a particularly basic sublanguage Scm

of the core Scheme expressions whose denotational seman-

tics is defined in the Scheme reports. ScmQ extends Scm with

literal quotations, then ScmQE adds eval. An archive of the

Agda source code is available as supplemental material [18]

accompanying the cited paper. The current version of the

Agda embedding of ScmQE includes also tentative abstract

syntax and semantics for Scheme programs and definitions.

7 Conclusion
After recalling the history of the Scheme reports, this paper

focused on the denotational semantics of primitive Scheme

constructs and selected procedures. It introduced a shallow

embedding of the semantics in Agda, developed systemati-

cally from the definitions given in §7.2 of R
5
RS. Checking the

embedding using the Agda proof assistant detected various

issues with the wellformedness of the original definitions.

Suggestions for how to address those issues have been made,

as well as for further changes that could improve the per-

spicuity and conciseness of the semantics.

Regardless of whether there will ever be any further revi-

sions of the current Scheme language and its report, it would

surely be worthwhile to replace the denotational semantics

in R
7
RS by a corrected version that addresses at least the non-

compositionality and the omitted argument in the definition

of cwv. Systematic use of continuation-passing style would

significantly simplify some of the semantic equations with

only minor changes to the definitions of the auxiliary func-

tions. An extension to include the semantics of programs,

definitions, and literal truth-values and quotations could be

based on their Agda embedding in [18]

Clearly, any update of the denotational semantics in R
7
RS

should be carefully checked – not only for wellformedness,

but also for soundness of the specified semantics relative

to reference implementations of Scheme. The shallow em-

bedding of denotational semantics in Agda has been useful

for detecting wellformedness issues, and might be used as

a basis for proving properties of denotations, but it seems

unsuitable for executing programs to test their behavior.

13

Scheme ’25, October 12–18, 2025, Singapore, Singapore Peter D. Mosses

Various systems were developed from the late 1970s to

the 1990s for implementing the denotational semantics of

programming languages, based on formal specifications for

the syntax and wellformedness of the meta-notation, but

the author is not aware of any that are still in use. It could

be interesting to develop a deep embedding of denotational

semantics in some modern language workbench, and use it

to make the current Scheme semantics truly executable.

To some extent, the shallow embedding of denotational

semantics in Agda presented in this paper corresponds to

Strachey’s original use of untyped 𝜆-calculus to formally

specify the semantics of programming languages [37]: in the

absence of a model of the untyped 𝜆-calculus, he relied on

reasoning about 𝜆-expressions using their laws, from which

the unfolding property of the fixed point combinator can be

derived. He subsequently embraced the models provided by

Scott’s theory of domains, where the fixed point operator is

defined as the limit of the Kleene sequence, and proved to

satisfy unfolding. Synthetic domain theory (SDT) [25, 30, 32]

reconciles postulated axioms with domain-theoretic models

and constructive logic; a formalization of SDT in Agda would

avoid the unsound postulates used in the current shallow

embedding of denotational semantics.

Acknowledgments
This paper is dedicated to the memory of Christopher Stra-

chey, who passed away 50 years ago, aged 58. He accom-

plished a great deal as a computing pioneer in the 1950s and

1960s [3]. By 1964, he was already using the lambda calculus

to specify the semantics of programming constructs [37].

From 1969, in collaboration with Dana Scott, he developed

the denotational style of formal semantics [29, 35, 39]. He

was a hugely inspiring advisor for my doctoral studies [13].

I would like to thank William Clinger, John D. Ramsdell,

Anton van Straaten, and Mitchell Wand for sharing their

recollections of the origin and evolution of the denotational

semantics included in the Scheme reports, as summarized in

Section 2.1.

Thanks also to Jesper Cockx, who provided helpful com-

ments on a draft of the submitted paper, and subsequently

on a draft of the discussion in Section 3.1 of the advantages

of using postulates instead of module parameters.

I am grateful to the anonymous reviewers for their percep-

tive comments on the submitted paper and their constructive

suggestions for its improvement.

Data-Availability Statement
The Agda code in the accompanying artifact [19] is a shal-

low embedding of the denotational semantics presented in

R
5
RS [10]. The relationship of the embedding to the defini-

tions in the Scheme report is explained in Section 3 of the

present paper.

The artifact includes a literate version of the embedding,

where the Agda code is interspersed with explanatory prose

(mostly copied from the paper).

The literate version also interleaves the original definitions

from R
5
RS with their embedding into Agda, to facilitate

comparison.

After downloading the artifact, the type-correctness of all

the Agda code can be checked by executing a single com-

mand. The development of soundness tests for the embed-

ding is work in progress.

Highlighted listings of both the plain and literate versions

of the Agda embedding are available in PDF as supplemental

material accompanying this paper. They were generated

using the artifact.

The artifact is an archive of a release of the public GitHub

repository pdmosses/scheme25-agda.

References
[1] Sophie Anglade, Jean-Jacques Lacrampe, and Christian Queinnec. 1994.

Semantics of combinations in Scheme. SIGPLAN Lisp Pointers VII, 4

(Oct. 1994), 15–20. doi:10.1145/382109.382669
[2] James Bodwin, Laurette Bradley, Kohji Kanda, Diane Litle, and Uwe

Pleban. 1982. Experience with an experimental compiler generator

based on denotational semantics. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction (Boston, Massachusetts, USA)

(SIGPLAN ’82). Association for Computing Machinery, New York, NY,

USA, 216–229. doi:10.1145/800230.806997
[3] Martin Campbell-Kelly. 1985. Christopher Strachey, 1916-1975: A

Biographical Note . IEEE Annals of the History of Computing 7, 01 (Jan.

1985), 19–42. doi:10.1109/MAHC.1985.10001
[4] William Clinger. 1984. The Scheme 311 compiler: An exercise in

denotational semantics. In Proceedings of the 1984 ACM Symposium
on LISP and Functional Programming (Austin, Texas, USA) (LFP ’84).
Association for Computing Machinery, New York, NY, USA, 356–364.

doi:10.1145/800055.802052
[5] William Clinger. 1985. The revised revised report on Scheme, or an

uncommon Lisp. Technical Report MIT Artificial Intelligence Memo

848. MIT. https://standards.scheme.org/official/r2rs.pdf Also pub-

lished as Computer Science Department Technical Report 174, Indiana

University, June 1985..

[6] William Clinger and Jonathan Rees. 1991. Revised
4

Report on the

Algorithmic Language Scheme. Lisp Pointers IV, 3 (July–September

1991), 1–55. https://standards.scheme.org/official/r4rs.pdf
[7] Tom de Jong. since 2019. TypeTopology/DomainTheory (Agda mod-

ules). Retrieved Augest 25, 2025 from https://martinescardo.github.io/
TypeTopology/DomainTheory.index.html

[8] Véronique Donzeau-Gouge, Gilles Kahn, and Bernard Lang. 1978. A
complete machine-checked definition of a simple programming language
using denotational semantics. Technical report RR-330. IRIA, Rocquen-

court. https://inria.hal.science/hal-04716568/
[9] Guy Lewis Steele Jr. and Gerald Jay Sussman. 1978. The revised report on

Scheme: A dialect of Lisp. Technical Report MIT Artificial Intelligence

Memo 452. MIT. https://standards.scheme.org/official/r1rs.pdf
[10] Richard Kelsey, William Clinger, and Jonathan Rees. 1998. Revised

5

Report on the Algorithmic Language Scheme. Higher-Order and Sym-
bolic Computation 11, 1 (1998), 7–105. https://standards.scheme.org/
official/r5rs.pdf

[11] Jacob Matthews and Robert Bruce Findler. 2008. An operational

semantics for Scheme. J. Funct. Program. 18, 1 (Jan. 2008), 47–86.

doi:10.1017/S0956796807006478

14

https://github.com/pdmosses/scheme25-agda/
https://doi.org/10.1145/382109.382669
https://doi.org/10.1145/800230.806997
https://doi.org/10.1109/MAHC.1985.10001
https://doi.org/10.1145/800055.802052
https://standards.scheme.org/official/r2rs.pdf
https://standards.scheme.org/official/r4rs.pdf
https://martinescardo.github.io/TypeTopology/DomainTheory.index.html
https://martinescardo.github.io/TypeTopology/DomainTheory.index.html
https://inria.hal.science/hal-04716568/
https://standards.scheme.org/official/r1rs.pdf
https://standards.scheme.org/official/r5rs.pdf
https://standards.scheme.org/official/r5rs.pdf
https://doi.org/10.1017/S0956796807006478

Checking a Denotational Semantics of Scheme in Agda Scheme ’25, October 12–18, 2025, Singapore, Singapore

[12] Peter D. Mosses. 1974. The semantics of semantic equations. In Math-
ematical Foundations of Computer Science, 3rd Symposium at Jadwisin
near Warsaw, Poland, June 17-22, 1974, Proceedings (Lecture Notes in
Computer Science, Vol. 28), Andrzej Blikle (Ed.). Springer, Berlin, Hei-

delberg, 409–422. doi:10.1007/3-540-07162-8_701
[13] Peter D. Mosses. 1975. Mathematical Semantics and Compiler Genera-

tion. DPhil dissertation. University of Oxford.

[14] Peter D. Mosses. 2024. SIS. Retrieved August 25, 2025 from https:
//pdmosses.github.io/software/sis/

[15] Peter D. Mosses. 2024. Towards Verification of a Denotational Seman-

tics of Inheritance. In Proceedings of the Workshop Dedicated to Jens
Palsberg on the Occasion of His 60th Birthday (Pasadena, CA, USA)

(JENSFEST ’24). ACM, New York, NY, USA, 5–13. doi:10.1145/3694848.
3694852

[16] Peter D. Mosses. 2025. A compositional semantics for eval in Scheme.

In Proceedings of the Workshop Dedicated to Olivier Danvy on the Oc-
casion of His 64th Birthday (OLIVIERFEST ’25), October 12–18, 2025,
Singapore, Singapore (Singapore, Singapore). ACM, New York, NY,

USA, 10 pages. doi:10.1145/3759427.3760369
[17] Peter D. Mosses. 2025. Lightweight Agda formalization of denotational

semantics. In Proceedings of the 31st International Conference on Types
for Proofs and Programs (TYPES 2025), Fredrik Nordvall Forsberg (Ed.).

University of Strathclyde, Glasgow, Scotland, 286–290. https://msp.
cis.strath.ac.uk/types2025/TYPES2025-book-of-abstracts.pdf

[18] Peter D. Mosses. 2025. Lightweight Agda formalization of denotational

semantics in article ‘A compositional semantics for eval in Scheme’.

ACM. doi:10.1145/3747409
[19] Peter D. Mosses. 2025. Shallow Agda embedding of denotational

semantics in article ‘Checking a denotational semantics of Scheme in

Agda’. ACM. doi:10.1145/3747410
[20] Steven S. Muchnick and Uwe F. Pleban. 1980. A semantic comparison

of LISP and SCHEME. In Proceedings of the 1980 ACM Conference on
LISP and Functional Programming (Stanford University, California,

USA) (LFP ’80). Association for Computing Machinery, New York, NY,

USA, 56–64. doi:10.1145/800087.802790
[21] Uwe F. Pleban. 1981. Preexecution Analysis Based on Denotational

Semantics. Ph. D. Dissertation. University of Kansas.

[22] Christian Queinnec. 1996. Lisp in Small Pieces. Cambridge University

Press, Cambridge, UK. doi:10.1017/CBO9781139172974
[23] Christian Queinnec. 2003. L2T: Literate Programming Utility. LIP6,

Université Pierre et Marie Curie. Retrieved August 25, 2025 from

https://christian.queinnec.org/WWW/l2t.html
[24] Jonathan Rees and William Clinger. 1986. Revised

3
Report on the Al-

gorithmic Language Scheme. ACM SIGPLAN Notices 21, 12 (December

1986), 37–79. https://standards.scheme.org/official/r3rs.pdf
[25] Bernhard Reus. 1999. Formalizing Synthetic Domain Theory. Journal of

Automated Reasoning 23 (1999), 411–444. doi:10.1023/A:1006258506401
[26] John C. Reynolds. 1998. Theories of Programming Languages. Cam-

bridge Univ. Press, Cambridge, UK. doi:10.1017/CBO9780511626364
[27] Scheme Working Group, Microprocessor and Microcomputer Stan-

dards Subcommittee. 1991. IEEE Standard 1178-1990 for the Scheme
Programming Language. Technical Report IEEE1178. IEEE, New York,

NY, USA.

[28] Scheme.org [n. d.]. Scheme Standards. Retrieved August 25, 2025 from

https://standards.scheme.org
[29] Dana Scott and Christopher Strachey. 1971. Toward a mathematical

semantics for computer languages. In Proc. Symp. on Computers and Au-
tomata (Microwave Research Inst. Symposia Series, Vol. 21). Polytechnic

Inst. of Brooklyn, New York, NY, USA, 19–46. Also: Tech. Monograph

PRG-6, Oxford Univ. Computing Lab., Programming Research Group

(1971). URL https://www.cs.ox.ac.uk/files/3228/PRG06.pdf.
[30] Dana S. Scott. 1980. Relating Theories of the Lambda-calculus: Dedi-

cated to Professor H. B. Curry on the Occasion of His 80th Birthday.

In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, J. P. Seldin and J. R. Hindley (Eds.). Academic Press, London,

UK, 403–450. https://prl.khoury.northeastern.edu/blog/static/scott-
80-relating-theories.pdf

[31] Alex Shinn, John Cowan, and Arthur A. Gleckler. 2021. Revised7 Report
on the Algorithmic Language Scheme: Small Edition. R7RS Working

Group 1. Retrieved August 25, 2025 from https://standards.scheme.
org/official/r7rs.pdf

[32] Alex Simpson. 2004. Computational Adequacy for Recursive Types in

Models of Intuitionistic Set Theory. Annals of Pure and Applied Logic
130, 1 (2004), 207–275. doi:10.1016/j.apal.2003.12.005 Papers presented

at the 2002 IEEE Symposium on Logic in Computer Science (LICS).

[33] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van

Straaten. 2007. Revised7 Report on the Algorithmic Language Scheme:
Rationale. R7RS Working Group 1. Retrieved August 25, 2025 from

https://standards.scheme.org/official/r6rs-rationale.pdf
[34] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,

Robby Findler, and Jacob Matthews. 2010. Revised6 Report on the Al-
gorithmic Language Scheme. Cambridge University Press, Cambridge,

UK. https://standards.scheme.org/official/r6rs.pdf
[35] Joseph E. Stoy. 1977. Denotational Semantics: The Scott-Strachey Ap-

proach to Programming Language Semantics. MIT Press, Cambridge,

MA, USA.

[36] Anton van Straaten. 2002. An Executable Denotational Se-
mantics for Scheme. AppSolutions. Retrieved August 25,

2025 from https://web.archive.org/web/20130531130945/http://www.
appsolutions.com/SchemeDS/ds.html

[37] Christopher Strachey. 1966. Towards a formal semantics. In Formal
Language Description Languages for Computer Programming, Proc. IFIP
Working Conference, 1964. North-Holland, Amsterdam, Netherlands,

198–220.

[38] Gerald Jay Sussman and Guy Lewis Steele Jr. 1975. Scheme: An inter-
preter for extended lambda calculus. Technical Report MIT Artificial

Intelligence Memo 349. MIT. https://standards.scheme.org/official/
r0rs.pdf

[39] Robert D. Tennent. 1976. The denotational semantics of programming

languages. Commun. ACM 19, 8 (Aug. 1976), 437–453. doi:10.1145/
360303.360308

[40] The Agda Team. 2025. Agda Language Reference. Retrieved August 25,

2025 from https://agda.readthedocs.io/en/v2.8.0/language/
[41] Wikipedia. 2025. Agda. Retrieved August 25, 2025 from https://en.

wikipedia.org/wiki/Agda_(programming_language)

Received 2025-07-25; accepted 2025-08-14

15

https://doi.org/10.1007/3-540-07162-8_701
https://pdmosses.github.io/software/sis/
https://pdmosses.github.io/software/sis/
https://doi.org/10.1145/3694848.3694852
https://doi.org/10.1145/3694848.3694852
https://doi.org/10.1145/3759427.3760369
https://msp.cis.strath.ac.uk/types2025/TYPES2025-book-of-abstracts.pdf
https://msp.cis.strath.ac.uk/types2025/TYPES2025-book-of-abstracts.pdf
https://doi.org/10.1145/3747409
https://doi.org/10.1145/3747410
https://doi.org/10.1145/800087.802790
https://doi.org/10.1017/CBO9781139172974
https://christian.queinnec.org/WWW/l2t.html
https://standards.scheme.org/official/r3rs.pdf
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1017/CBO9780511626364
https://standards.scheme.org
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf
https://prl.khoury.northeastern.edu/blog/static/scott-80-relating-theories.pdf
https://prl.khoury.northeastern.edu/blog/static/scott-80-relating-theories.pdf
https://standards.scheme.org/official/r7rs.pdf
https://standards.scheme.org/official/r7rs.pdf
https://doi.org/10.1016/j.apal.2003.12.005
https://standards.scheme.org/official/r6rs-rationale.pdf
https://standards.scheme.org/official/r6rs.pdf
https://web.archive.org/web/20130531130945/http://www.appsolutions.com/SchemeDS/ds.html
https://web.archive.org/web/20130531130945/http://www.appsolutions.com/SchemeDS/ds.html
https://standards.scheme.org/official/r0rs.pdf
https://standards.scheme.org/official/r0rs.pdf
https://doi.org/10.1145/360303.360308
https://doi.org/10.1145/360303.360308
https://agda.readthedocs.io/en/v2.8.0/language/
https://en.wikipedia.org/wiki/Agda_(programming_language)
https://en.wikipedia.org/wiki/Agda_(programming_language)

	Abstract
	1 Introduction
	1.1 The Scheme Reports
	1.2 Checking the Formal Semantics of Scheme
	1.3 Wellformedness of Denotational Definitions

	2 Denotational Semantics of Core Scheme
	2.1 Origin
	2.2 Concepts and Notation
	2.3 Contents and Structure

	3 Embedding in Agda
	3.1 Notation
	3.2 Abstract Syntax
	3.3 Domain Equations
	3.4 Semantic Functions
	3.5 Auxiliary Functions

	4 Wellformedness Issues
	4.1 Non-compositionality
	4.2 Type Errors
	4.3 Overloaded Names

	5 Suggestions
	5.1 Domain Equations
	5.2 Semantic Functions
	5.3 Auxiliary Functions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

