Scm.Semantic-Functions
{-# OPTIONS --rewriting --confluence-check --lossy-unification #-}
module Scm.Semantic-Functions where
open import Scm.Notation
open import Scm.Abstract-Syntax
open import Scm.Domain-Equations
open import Scm.Auxiliary-Functions
𝒦⟦_⟧ : ⟪ Con →ˢ 𝐄 ⟫
ℰ⟦_⟧ : ⟪ Exp →ˢ 𝐔 →ᶜ (𝐄 →ᶜ 𝐂) →ᶜ 𝐂 ⟫
ℰ⋆⟦_⟧ : ⟪ Exp⋆ →ˢ 𝐔 →ᶜ (𝐄⋆ →ᶜ 𝐂) →ᶜ 𝐂 ⟫
ℬ⟦_⟧ : ⟪ Body →ˢ 𝐔 →ᶜ (𝐔 →ᶜ 𝐂) →ᶜ 𝐂 ⟫
ℬ⁺⟦_⟧ : ⟪ Body⁺ →ˢ 𝐔 →ᶜ (𝐔 →ᶜ 𝐂) →ᶜ 𝐂 ⟫
𝒫⟦_⟧ : ⟪ Prog →ˢ 𝐀 ⟫
𝒦⟦ int Z ⟧ = η Z 𝐑-in-𝐄
𝒦⟦ #t ⟧ = η true 𝐓-in-𝐄
𝒦⟦ #f ⟧ = η false 𝐓-in-𝐄
ℰ⟦ con K ⟧ ρ κ = κ (𝒦⟦ K ⟧)
ℰ⟦ ide I ⟧ ρ κ = hold (ρ I) κ
ℰ⟦ ⦅ E ␣ E⋆ ⦆ ⟧ ρ κ =
ℰ⟦ E ⟧ ρ (λ ϵ →
ℰ⋆⟦ E⋆ ⟧ ρ (λ ϵ⋆ →
(ϵ |-𝐅) ϵ⋆ κ))
ℰ⟦ ⦅lambda I ␣ E ⦆ ⟧ ρ κ =
κ ( (λ ϵ⋆ κ′ →
list ϵ⋆ (λ ϵ →
alloc ϵ (λ α →
ℰ⟦ E ⟧ (ρ [ α / I ]) κ′))
) 𝐅-in-𝐄)
ℰ⟦ ⦅if E ␣ E₁ ␣ E₂ ⦆ ⟧ ρ κ =
ℰ⟦ E ⟧ ρ (λ ϵ →
truish ϵ ⟶ ℰ⟦ E₁ ⟧ ρ κ , ℰ⟦ E₂ ⟧ ρ κ)
ℰ⟦ ⦅set! I ␣ E ⦆ ⟧ ρ κ =
ℰ⟦ E ⟧ ρ (λ ϵ →
assign (ρ I) ϵ (
κ (η unspecified 𝐌-in-𝐄)))
ℰ⋆⟦ ␣␣␣ ⟧ ρ κ = κ ⟨⟩
ℰ⋆⟦ E ␣␣ E⋆ ⟧ ρ κ =
ℰ⟦ E ⟧ ρ (λ ϵ →
ℰ⋆⟦ E⋆ ⟧ ρ (λ ϵ⋆ →
κ (⟨ ϵ ⟩ § ϵ⋆)))
ℬ⟦ ␣␣ E ⟧ ρ κ = ℰ⟦ E ⟧ ρ (λ ϵ → κ ρ)
ℬ⟦ ⦅define I ␣ E ⦆ ⟧ ρ κ =
ℰ⟦ E ⟧ ρ (λ ϵ → (ρ I ==ᴸ unknown) ⟶
alloc ϵ (λ α → κ (ρ [ α / I ])),
assign (ρ I) ϵ (κ ρ))
ℬ⟦ ⦅begin B⁺ ⦆ ⟧ ρ κ = ℬ⁺⟦ B⁺ ⟧ ρ κ
ℬ⁺⟦ ␣␣ B ⟧ ρ κ = ℬ⟦ B ⟧ ρ κ
ℬ⁺⟦ B ␣␣ B⁺ ⟧ ρ κ = ℬ⟦ B ⟧ ρ (λ ρ′ → ℬ⁺⟦ B⁺ ⟧ ρ′ κ)
𝒫⟦ ␣␣␣ ⟧ = finished initial-store
𝒫⟦ ␣␣ B⁺ ⟧ = ℬ⁺⟦ B⁺ ⟧ initial-env (λ ρ → finished) initial-store