Denotational Semantics in Agda
Algebra.Lattice.Construct.NaturalChoice.MaxOp
Initializing search
    pdmosses/xds-agda
    • About
    • Meta-notation
    • ULC
    • PCF
    • Scheme
    pdmosses/xds-agda
    • About
    • Meta-notation
      • Untyped λ-calculus
      • ULC.All
      • ULC.Variables
      • ULC.Terms
      • ULC.Domains
      • ULC.Environments
      • ULC.Semantics
      • ULC.Checks
      • PCF (Plotkin 1977)
      • PCF.All
      • PCF.Domain Notation
      • PCF.Types
      • PCF.Constants
      • PCF.Variables
      • PCF.Terms
      • PCF.Environments
      • PCF.Checks
      • Core Scheme (R5RS)
      • Scheme.All
      • Scheme.Domain Notation
      • Scheme.Abstract Syntax
      • Scheme.Domain Equations
      • Scheme.Auxiliary Functions
      • Scheme.Semantic Functions

    Algebra.Lattice.Construct.NaturalChoice.MaxOp

    ------------------------------------------------------------------------
    -- The Agda standard library
    --
    -- Properties of a max operator derived from a spec over a total
    -- preorder.
    ------------------------------------------------------------------------
    
    {-# OPTIONS --cubical-compatible --safe #-}
    
    open import Algebra.Construct.NaturalChoice.Base
    import Algebra.Lattice.Construct.NaturalChoice.MinOp as MinOp
    open import Relation.Binary.Bundles using (TotalPreorder)
    
    module Algebra.Lattice.Construct.NaturalChoice.MaxOp
      {a ℓ₁ ℓ₂} {O : TotalPreorder a ℓ₁ ℓ₂} (maxOp : MaxOperator O)
      where
    
    private
      module Min = MinOp (MaxOp⇒MinOp maxOp)
    
    open Min public
      using ()
      renaming
      ( ⊓-isSemilattice           to  ⊔-isSemilattice
      ; ⊓-semilattice             to  ⊔-semilattice
      )
    
    Made with Material for MkDocs