Denotational Semantics in Agda
Relation.Binary.Lattice.Definitions
Initializing search
    pdmosses/xds-agda
    • About
    • Meta-notation
    • ULC
    • PCF
    • Scheme
    pdmosses/xds-agda
    • About
    • Meta-notation
      • Untyped λ-calculus
      • ULC.All
      • ULC.Variables
      • ULC.Terms
      • ULC.Domains
      • ULC.Environments
      • ULC.Semantics
      • ULC.Checks
      • PCF (Plotkin 1977)
      • PCF.All
      • PCF.Domain Notation
      • PCF.Types
      • PCF.Constants
      • PCF.Variables
      • PCF.Terms
      • PCF.Environments
      • PCF.Checks
      • Core Scheme (R5RS)
      • Scheme.All
      • Scheme.Domain Notation
      • Scheme.Abstract Syntax
      • Scheme.Domain Equations
      • Scheme.Auxiliary Functions
      • Scheme.Semantic Functions

    Relation.Binary.Lattice.Definitions

    ------------------------------------------------------------------------
    -- The Agda standard library
    --
    -- Definitions for order-theoretic lattices
    ------------------------------------------------------------------------
    
    -- The contents of this module should be accessed via
    -- `Relation.Binary.Lattice`.
    
    {-# OPTIONS --cubical-compatible --safe #-}
    
    module Relation.Binary.Lattice.Definitions where
    
    open import Algebra.Core
    open import Data.Product.Base using (_×_; _,_)
    open import Function.Base using (flip)
    open import Relation.Binary.Core using (Rel)
    open import Level using (Level)
    
    private
      variable
        a ℓ : Level
        A : Set a
    
    ------------------------------------------------------------------------
    -- Relationships between orders and operators
    
    Supremum : Rel A ℓ → Op₂ A → Set _
    Supremum _≤_ _∨_ =
      ∀ x y → x ≤ (x ∨ y) × y ≤ (x ∨ y) × ∀ z → x ≤ z → y ≤ z → (x ∨ y) ≤ z
    
    Infimum : Rel A ℓ → Op₂ A → Set _
    Infimum _≤_ = Supremum (flip _≤_)
    
    Exponential : Rel A ℓ → Op₂ A → Op₂ A → Set _
    Exponential _≤_ _∧_ _⇨_ =
      ∀ w x y → ((w ∧ x) ≤ y → w ≤ (x ⇨ y)) × (w ≤ (x ⇨ y) → (w ∧ x) ≤ y)
    
    Made with Material for MkDocs