Denotational Semantics in Agda
Relation.Binary.Morphism.Definitions
Initializing search
    pdmosses/xds-agda
    • About
    • Meta-notation
    • ULC
    • PCF
    • Scheme
    pdmosses/xds-agda
    • About
    • Meta-notation
      • Untyped λ-calculus
      • ULC.All
      • ULC.Variables
      • ULC.Terms
      • ULC.Domains
      • ULC.Environments
      • ULC.Semantics
      • ULC.Checks
      • PCF (Plotkin 1977)
      • PCF.All
      • PCF.Domain Notation
      • PCF.Types
      • PCF.Constants
      • PCF.Variables
      • PCF.Terms
      • PCF.Environments
      • PCF.Checks
      • Core Scheme (R5RS)
      • Scheme.All
      • Scheme.Domain Notation
      • Scheme.Abstract Syntax
      • Scheme.Domain Equations
      • Scheme.Auxiliary Functions
      • Scheme.Semantic Functions

    Relation.Binary.Morphism.Definitions

    ------------------------------------------------------------------------
    -- The Agda standard library
    --
    -- Basic definitions for morphisms between algebraic structures
    ------------------------------------------------------------------------
    
    {-# OPTIONS --cubical-compatible --safe #-}
    
    open import Relation.Binary.Core
    
    module Relation.Binary.Morphism.Definitions
      {a} (A : Set a)     -- The domain of the morphism
      {b} (B : Set b)     -- The codomain of the morphism
      where
    
    open import Level using (Level)
    
    private
      variable
        ℓ₁ ℓ₂ : Level
    
    ------------------------------------------------------------------------
    -- Morphism definition in Function.Core
    
    open import Function.Core public
      using (Morphism)
    
    ------------------------------------------------------------------------
    -- Basic definitions
    
    Homomorphic₂ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _
    Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ = ∀ {x y} → x ∼₁ y → ⟦ x ⟧ ∼₂ ⟦ y ⟧
    
    Made with Material for MkDocs